# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import queue import statistics import threading import time from abc import ABC, abstractmethod from collections import deque from dataclasses import dataclass, field from enum import Enum from functools import partial from typing import Optional, Union import torch import torch.nn as nn from tokenizers import Tokenizer from tokenizers.decoders import DecodeStream from torch.profiler import profile, schedule, tensorboard_trace_handler from tqdm import tqdm from ..configuration_utils import PretrainedConfig from ..generation.configuration_utils import GenerationConfig from ..utils.metrics import ContinuousBatchProcessorMetrics, attach_tracer, traced class RequestStatus(Enum): """Status of a generation request through its lifecycle.""" PENDING = "pending" PREFILLING = "prefilling" PREFILLING_SPLIT = "prefilling_split" SPLIT_PENDING_REMAINDER = "split_pending_remainder" DECODING = "decoding" FINISHED = "finished" FAILED = "failed" # Setup your logger logger = logging.getLogger(__name__) logger.setLevel(logging.WARNING) @dataclass class GenerationOutput: """Tracks the output of a generation request. Attributes: request_id (str): The ID of the generation request. prompt_ids (list[int]): The IDs of the prompt tokens. generated_tokens (list[int]): The generated tokens. logprobs (list[float]): The log probabilities of the generated tokens. error (Optional[str]): Any error message associated with the request. When None, the request was successful. """ request_id: str prompt_ids: list[int] = field(default_factory=list) generated_tokens: list[int] = field(default_factory=list) logprobs: list[float] = field(default_factory=list) error: Optional[str] = None status: RequestStatus = RequestStatus.PENDING created_time: float = field(default_factory=time.time) next_token: Optional[int] = field(default_factory=int) @dataclass class RequestState: """Tracks the state of a generation request through its lifecycle. Attributes: status (RequestStatus): can be one of PENDING, PREFILLING, PREFILLING_SPLIT, SPLIT_PENDING_REMAINDER, DECODING, FINISHED, FAILED """ # Required fields request_id: str prompt_ids: Optional[list[int]] = None # the one being processed full_prompt_ids: Optional[list[int]] = None # the full prompt remaining_prompt_ids: list[int] = field(default_factory=list) # For split requests static_outputs: list[int] = field(default_factory=list) allocated_blocks: list[int] = field(default_factory=list) position_offset: int = 0 # Current position in the sequence for position_ids status: RequestStatus = RequestStatus.PENDING max_new_tokens: int = 20 eos_token_id: int = -1 created_time: float = field(default_factory=time.time) error: Optional[str] = None next_token: Optional[str] = None def current_len(self) -> int: """Get the current length of the sequence (prompt + generated tokens).""" return self.position_offset def generated_len(self) -> int: """Get the number of tokens generated so far.""" return len(self.static_outputs) @traced def update_with_token(self, token_id: int) -> bool: """Update the request with a newly generated token and check for completion. Args: token_id: The token ID to add to the output sequence Returns: bool: True if the request is now complete, False otherwise """ # Only update if we're in decoding state if self.status != RequestStatus.DECODING: return False is_eos = token_id == self.eos_token_id and self.eos_token_id != -1 is_max_len = self.generated_len() >= self.max_new_tokens # Only add the token if we're not finishing due to max length # (EOS tokens should still be added to the output) if not (is_max_len and not is_eos): self.static_outputs.extend([token_id]) if is_eos or is_max_len: self.status = RequestStatus.FINISHED return True return False def __repr__(self): return f"RequestState(\n\trequest_id={self.request_id},\n\tstatus={self.status},\n\tout_tokens={self.generated_len()},\n\tquery_length={len(self.prompt_ids)}, \n\tremaining_tokens={len(self.remaining_prompt_ids)}, \n\tkv_length={self.position_offset}\n\tfull_prompt_lenght={len(self.full_prompt_ids)},\n\tallocated_blocks={self.allocated_blocks},\n\tgenerated_tokens={self.static_outputs}\n)" def to_generation_output(self): """Convert the request state to a GenerationOutput object.""" return GenerationOutput( request_id=self.request_id, prompt_ids=self.full_prompt_ids, status=self.status, generated_tokens=self.static_outputs, logprobs=[], error=self.error, next_token=self.next_token, ) @attach_tracer() class PagedAttentionCache: def __init__( self, config: PretrainedConfig, generation_config: GenerationConfig, device: torch.device, dtype: torch.dtype = torch.float16, layer_device_map: Optional[dict[int, Union[str, torch.device, int]]] = None, initial_prompt_shapes: Optional[list[list[int]]] = None, tp_size: Optional[int] = None, ) -> None: """Initialize a paged attention cache for efficient memory usage. Args: config: Model configuration generation_config: Generation configuration containing cache parameters device: Device for the cache tensors dtype: Data type for the cache tensors layer_device_map: Optional mapping of layer indices to devices initial_prompt_shapes: Optional sample prompts to help calculate optimal cache size """ # Extract model dimensions self.num_key_value_heads = ( config.num_attention_heads if getattr(config, "num_key_value_heads", None) is None else config.num_key_value_heads ) self.head_dim = ( config.head_dim if hasattr(config, "head_dim") else config.hidden_size // config.num_attention_heads ) self.num_hidden_layers = config.num_hidden_layers # Calculate optimal block size and number if not provided num_blocks = getattr(generation_config, "num_blocks", None) block_size = getattr(generation_config, "block_size", None) if num_blocks is None or block_size is None: logger.info("Calculating optimal block size and number...") num_blocks, block_size = compute_optimal_blocks( device, config, generation_config, initial_prompt_shapes or [], dtype, median_prefill_length=200 ) logger.info(f"Using calculated num_blocks={num_blocks}, block_size={block_size}") self.block_size = block_size self.num_blocks = num_blocks num_key_value_heads = self.num_key_value_heads if tp_size is not None and tp_size > 1: if num_key_value_heads % tp_size != 0: raise ValueError( f"Number of key value heads {num_key_value_heads} must be divisible by tensor parallel size {tp_size}." ) # If the model is using tensor parallelism, we need to adjust the number of heads accordingly. num_key_value_heads //= tp_size self.cache_shape = (num_key_value_heads, num_blocks, self.block_size, self.head_dim) self.dtype = dtype self.device = device self.key_cache: list[torch.Tensor] = [] self.value_cache: list[torch.Tensor] = [] for idx in range(config.num_hidden_layers): layer_device = layer_device_map[idx] if layer_device_map is not None else device new_layer_key_cache = torch.zeros(self.cache_shape, dtype=self.dtype, device=layer_device) new_layer_value_cache = torch.zeros(self.cache_shape, dtype=self.dtype, device=layer_device) # Note: `mark_static_address` is used to tag the cache as a fixed data pointer, # preventing compiled graph breaks when updating the cache. torch._dynamo.mark_static_address(new_layer_key_cache) torch._dynamo.mark_static_address(new_layer_value_cache) self.key_cache.append(new_layer_key_cache) self.value_cache.append(new_layer_value_cache) # Block management data structures self._free_blocks = deque(range(num_blocks)) self._block_tables: dict[str, list[int]] = {} @traced def allocate_blocks(self, n_blocks: int, request_id: str) -> list[int]: """Allocates n_blocks for a given request_id.""" if len(self._free_blocks) < n_blocks: return False allocated = [] for _ in range(n_blocks): allocated.append(self._free_blocks.popleft()) if request_id not in self._block_tables: self._block_tables[request_id] = [] self._block_tables[request_id].extend(allocated) return allocated @traced def free_blocks(self, request_id: str) -> None: """Frees all blocks associated with a request_id.""" if request_id in self._block_tables: blocks_to_free = self._block_tables.pop(request_id) self._free_blocks.extend(blocks_to_free) else: logger.warning(f"Attempted to free blocks for non-existent request_id: {request_id}") def get_num_free_blocks(self) -> int: """Returns the number of free blocks available.""" return len(self._free_blocks) def get_block_table(self, request_id: str) -> list[int]: """Returns the block table for a request.""" return self._block_tables.get(request_id, []) @traced def _get_physical_indices(self, state: RequestState, logical_indices: list[int]) -> list[int]: """ Maps logical sequence indices to physical cache indices using the block table, using PyTorch. Args: request_id: The request ID. logical_indices: A list of logical indices. Returns: A list of physical indices. Raises: ValueError: If no block table is found for the request ID. IndexError: If a logical index maps to a block index that is out of bounds. """ request_id = state.request_id block_table = self._block_tables.get(request_id) if not block_table: raise ValueError(f"No block table found for request {request_id}") block_size = self.block_size physical_indices = [] for idx in logical_indices: block_idx = idx // block_size block_offset = idx % block_size if block_idx >= len(block_table): raise IndexError( f"Logical index {idx} maps to block index {block_idx} which is out of bounds " f"for request {request_id}" ) physical_block_num = block_table[block_idx] physical_index = physical_block_num * block_size + block_offset physical_indices.append(physical_index) return physical_indices @traced def update( self, key_states: torch.Tensor, value_states: torch.Tensor, layer_idx: int, read_index, write_index, **kwargs, ) -> tuple[torch.Tensor, torch.Tensor]: # Reshape cache for easier indexing total_slots = self.num_blocks * self.block_size k_cache_flat = self.key_cache[layer_idx].view(self.num_key_value_heads, total_slots, self.head_dim) v_cache_flat = self.value_cache[layer_idx].view(self.num_key_value_heads, total_slots, self.head_dim) k_cache_flat[:, write_index, :] = key_states[0] v_cache_flat[:, write_index, :] = value_states[0] return k_cache_flat[None, :, read_index, :], v_cache_flat[None, :, read_index, :] class Scheduler(ABC): """ Abstract base class for scheduling requests in the continuous batch processor. It is expected that cache allocation and scheduling logic will be implemented in subclasses. """ def __init__(self, cache: PagedAttentionCache, retain_cache_on_finish: bool = False): self.active_requests: dict[str, RequestState] = {} self.waiting_requests: dict[str, RequestState] = {} self.waiting_requests_order: deque[str] = deque() self.cache = cache self.retain_cache_on_finish = retain_cache_on_finish @abstractmethod def add_waiting_request(self, state: RequestState): """Add a request to the waiting list.""" pass @abstractmethod def schedule_batch(self, token_budget: int) -> list[RequestState]: pass @traced def has_pending_requests(self) -> bool: """Check if there are requests ready to be processed.""" return self.active_requests or self.waiting_requests @abstractmethod def finish_request(self, request_id: str, evict_from_cache: bool = True): """Finish processing a request and free its allocated blocks.""" pass @traced def get_active_request_static_outputs(self, request_id: str) -> list[int]: if request_id in self.active_requests: return self.active_requests[request_id].static_outputs return [] @attach_tracer() class FIFOScheduler(Scheduler): @traced def _allocate_blocks_if_needed(self, state: RequestState, len_next_tokens: int): # 1. we check that the occupancy is less than the requested length # 2. we allocate enough blocks to cover the requested length current_len = state.current_len() occupancy = len(state.allocated_blocks) * self.cache.block_size - current_len if occupancy < len_next_tokens or (len(state.allocated_blocks) == 0): blocks_needed = ((len_next_tokens - occupancy + 1) // self.cache.block_size) + 1 allocated = self.cache.allocate_blocks(blocks_needed, state.request_id) if not allocated: return False state.allocated_blocks.extend(allocated) return True @traced(span_name="prepare_request") def _prepare_request_for_processing( self, state: RequestState, token_budget: int, request_ids_to_remove_from_waiting: set[str] ): """Prepare a request for processing in the current batch.""" request_tokens = ( state.remaining_prompt_ids if state.status == RequestStatus.SPLIT_PENDING_REMAINDER else state.prompt_ids ) if len(request_tokens) < token_budget: # Can process the entire prompt/remainder if state.status == RequestStatus.PENDING: self.active_requests[state.request_id] = state state.status = RequestStatus.PREFILLING request_ids_to_remove_from_waiting.add(state.request_id) elif state.status == RequestStatus.SPLIT_PENDING_REMAINDER: state.status = RequestStatus.PREFILLING state.prompt_ids = state.remaining_prompt_ids state.remaining_prompt_ids = [] else: # Need to split the request if state.status == RequestStatus.PENDING: self.active_requests[state.request_id] = state state.status = RequestStatus.PREFILLING_SPLIT request_ids_to_remove_from_waiting.add(state.request_id) elif state.status == RequestStatus.SPLIT_PENDING_REMAINDER: state.status = RequestStatus.PREFILLING_SPLIT state.remaining_prompt_ids = request_tokens[token_budget:] state.prompt_ids = request_tokens[:token_budget] @traced def add_waiting_request(self, state: RequestState): """Add a request to the waiting list.""" if self.retain_cache_on_finish and state.request_id in self.active_requests: old_state = self.active_requests.pop(state.request_id) state.prompt_ids = state.prompt_ids[len(old_state.full_prompt_ids) :] state.allocated_blocks = old_state.allocated_blocks state.position_offset = old_state.position_offset self.waiting_requests[state.request_id] = state self.waiting_requests_order.append(state.request_id) @traced def schedule_batch(self, token_budget: int) -> list[RequestState]: priority_states: list[RequestState] = [] second_priority_states: list[RequestState] = [] scheduled_requests = [] for state in self.active_requests.values(): if state.status == RequestStatus.DECODING: priority_states.append(state) if state.status == RequestStatus.SPLIT_PENDING_REMAINDER: second_priority_states.append(state) # Add waiting requests to second priority for req_id in self.waiting_requests_order: second_priority_states.append(self.waiting_requests[req_id]) candidates = priority_states + second_priority_states request_ids_to_remove_from_waiting = set() for state in candidates: self._prepare_request_for_processing(state, token_budget, request_ids_to_remove_from_waiting) request_len = len(state.prompt_ids) if not self._allocate_blocks_if_needed( state, len(state.prompt_ids) ): # don't schedule if we can't allocate blocks if len(self.cache._free_blocks) == 0: break continue @traced def _add_to_scheduled_requests(state: RequestState): scheduled_requests.append(state) _add_to_scheduled_requests(state) token_budget -= request_len @traced def _remove_from_waiting_requests(state: RequestState): req_id = state.request_id if req_id in self.waiting_requests: del self.waiting_requests[req_id] request_ids_to_remove_from_waiting.add(req_id) _remove_from_waiting_requests(state) if token_budget == 0: break self.waiting_requests_order = deque( [req_id for req_id in self.waiting_requests_order if req_id not in request_ids_to_remove_from_waiting] ) return scheduled_requests @traced def finish_request(self, request_id: str, evict_from_cache: bool = True): if evict_from_cache: self.cache.free_blocks(request_id) if request_id in self.active_requests: del self.active_requests[request_id] @attach_tracer() class PrefillFirstScheduler(Scheduler): @traced def _allocate_blocks_if_needed(self, state: RequestState, len_next_tokens: int): # 1. we check that the occupancy is less than the requested length # 2. we allocate enough blocks to cover the requested length current_len = state.current_len() occupancy = len(state.allocated_blocks) * self.cache.block_size - current_len if occupancy < len_next_tokens or (len(state.allocated_blocks) == 0): blocks_needed = ((len_next_tokens - occupancy + 1) // self.cache.block_size) + 1 allocated = self.cache.allocate_blocks(blocks_needed, state.request_id) if not allocated: return False state.allocated_blocks.extend(allocated) return True @traced(span_name="prepare_request") def _prepare_request_for_processing( self, state: RequestState, token_budget: int, request_ids_to_remove_from_waiting: set[str] ): """Prepare a request for processing in the current batch.""" request_tokens = ( state.remaining_prompt_ids if state.status == RequestStatus.SPLIT_PENDING_REMAINDER else state.prompt_ids ) if len(request_tokens) < token_budget: # Can process the entire prompt/remainder if state.status == RequestStatus.PENDING: self.active_requests[state.request_id] = state state.status = RequestStatus.PREFILLING request_ids_to_remove_from_waiting.add(state.request_id) elif state.status == RequestStatus.SPLIT_PENDING_REMAINDER: state.status = RequestStatus.PREFILLING state.prompt_ids = state.remaining_prompt_ids state.remaining_prompt_ids = [] else: # Need to split the request if state.status == RequestStatus.PENDING: self.active_requests[state.request_id] = state state.status = RequestStatus.PREFILLING_SPLIT request_ids_to_remove_from_waiting.add(state.request_id) elif state.status == RequestStatus.SPLIT_PENDING_REMAINDER: state.status = RequestStatus.PREFILLING_SPLIT state.remaining_prompt_ids = request_tokens[token_budget:] state.prompt_ids = request_tokens[:token_budget] @traced def add_waiting_request(self, state: RequestState): """Add a request to the waiting list.""" if self.retain_cache_on_finish and state.request_id in self.active_requests: old_state = self.active_requests.pop(state.request_id) state.prompt_ids = state.prompt_ids[len(old_state.full_prompt_ids) :] # XXX: check for indexing error? state.allocated_blocks = old_state.allocated_blocks state.position_offset = old_state.position_offset self.waiting_requests[state.request_id] = state self.waiting_requests_order.append(state.request_id) @traced def schedule_batch(self, token_budget: int) -> list[RequestState]: priority_states: list[RequestState] = [] second_priority_states: list[RequestState] = [] scheduled_requests = [] for state in self.active_requests.values(): if state.status == RequestStatus.SPLIT_PENDING_REMAINDER: priority_states.append(state) elif state.status == RequestStatus.DECODING: second_priority_states.append(state) for req_id in self.waiting_requests_order: second_priority_states.append(self.waiting_requests[req_id]) candidates = priority_states + second_priority_states request_ids_to_remove_from_waiting = set() for state in candidates: self._prepare_request_for_processing(state, token_budget, request_ids_to_remove_from_waiting) request_len = len(state.prompt_ids) if not self._allocate_blocks_if_needed( state, len(state.prompt_ids) ): # don't schedule if we can't allocate blocks if len(self.cache._free_blocks) == 0: break continue @traced def _add_to_scheduled_requests(state: RequestState): scheduled_requests.append(state) _add_to_scheduled_requests(state) token_budget -= request_len @traced def _remove_from_waiting_requests(state: RequestState): req_id = state.request_id if req_id in self.waiting_requests: del self.waiting_requests[req_id] request_ids_to_remove_from_waiting.add(req_id) _remove_from_waiting_requests(state) if token_budget == 0: break self.waiting_requests_order = deque( [req_id for req_id in self.waiting_requests_order if req_id not in request_ids_to_remove_from_waiting] ) return scheduled_requests @traced def finish_request(self, request_id: str, evict_from_cache: bool = True): if evict_from_cache: self.cache.free_blocks(request_id) if request_id in self.active_requests: del self.active_requests[request_id] @traced(standalone=True) def compute_optimal_blocks( device: torch.device, config: PretrainedConfig, generation_config: GenerationConfig, inputs: list[list[int]], dtype: torch.dtype = torch.bfloat16, safety_margin: float = 0.9, median_prefill_length: Optional[int] = None, ): """Calculate optimal number and size of blocks for the KV cache. Args: device: The device where the model runs config: The model configuration generation_config: The generation configuration inputs: Sample input sequences to estimate memory requirements dtype: Data type for cache tensors safety_margin: Fraction of available memory to use median_prefill_length: Override for median prefill length calculation Returns: Tuple of (num_blocks, block_size) """ # Extract model dimensions head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) num_kv_heads = getattr(config, "num_key_value_heads", config.num_attention_heads) num_hidden_layers = getattr(config, "num_hidden_layers", 40) # Get available device memory if device.type == "cuda": device_properties = torch.cuda.get_device_properties(device) total_memory = device_properties.total_memory allocated_memory = torch.cuda.memory_allocated(device) reserved_memory = torch.cuda.memory_reserved(device) available_memory = total_memory - max(allocated_memory, reserved_memory) elif device.type == "mps": logger.warning("MPS memory estimation is approximate. Using conservative defaults.") return 2048, 256 else: logger.warning(f"Unsupported device type {device.type} for optimal block calculation. Using defaults.") return 32, 128 # Apply safety margin available_memory = int(available_memory * safety_margin) if available_memory <= 0: logger.warning("Not enough available memory. Using minimum configuration.") return 8, 128 # Minimum viable configuration # Calculate memory per token dtype_size = torch.tensor([], dtype=dtype).element_size() memory_per_token = 2 * num_kv_heads * head_dim * dtype_size * num_hidden_layers # For K and V caches # Estimate sequence length requirements tokens_to_generate = getattr(generation_config, "max_new_tokens") or 20 if median_prefill_length is None and inputs: non_empty_inputs = [len(seq) for seq in inputs if seq] median_prefill_length = int(statistics.median(non_empty_inputs)) if non_empty_inputs else 64 elif median_prefill_length is None: median_prefill_length = 64 # Reasonable default if no inputs provided # Total sequence length including generated tokens seq_length = median_prefill_length + tokens_to_generate # Calculate block parameters MIN_BLOCK_SIZE = 16 # Estimate number of concurrent sequences per_sequence_memory = seq_length * memory_per_token max_concurrent_sequences = max(1, int(available_memory // per_sequence_memory)) # Total tokens that can fit in memory total_tokens = available_memory // memory_per_token # Calculate block size (rounded to power of 2) initial_block_size = max(MIN_BLOCK_SIZE, total_tokens // (max_concurrent_sequences * 2)) block_size = 1 << (initial_block_size - 1).bit_length() # Round to power of 2 # Calculate number of blocks num_blocks = max(1, total_tokens // block_size) logger.info( f"Optimal cache: {num_blocks} blocks of size {block_size} " f"(can handle ~{num_blocks * block_size // seq_length} sequences of length {seq_length})" ) return int(num_blocks), int(block_size) @dataclass class PagedAttentionArgs: input_ids: torch.Tensor attention_mask: torch.Tensor position_ids: torch.Tensor cumulative_seqlens_q: torch.Tensor cumulative_seqlens_k: torch.Tensor max_seqlen_q: int max_seqlen_k: int write_index: torch.Tensor read_index: torch.Tensor logits_indices: torch.Tensor block_tables: dict[str, list[int]] cache: PagedAttentionCache use_cache: bool = False @traced def create_document_mask(cumulative_seqlens_q, cumulative_seqlens_k): # Number of documents valid_docs_q = cumulative_seqlens_q[1:] > cumulative_seqlens_q[:-1] valid_docs_k = cumulative_seqlens_k[1:] > cumulative_seqlens_k[:-1] num_valid_docs = min(valid_docs_q.sum(), valid_docs_k.sum()) # Trim to valid docs cumulative_seqlens_q = cumulative_seqlens_q[: num_valid_docs + 1] cumulative_seqlens_k = cumulative_seqlens_k[: num_valid_docs + 1] total_q = cumulative_seqlens_q[-1] total_k = cumulative_seqlens_k[-1] q_indices = torch.arange(total_q, device=cumulative_seqlens_q.device) k_indices = torch.arange(total_k, device=cumulative_seqlens_k.device) q_doc_ids = torch.bucketize(q_indices, cumulative_seqlens_q[1:], right=True) k_doc_ids = torch.bucketize(k_indices, cumulative_seqlens_k[1:], right=False) doc_mask = q_doc_ids[:, None] == k_doc_ids[None, :] # apply causal mask where no decoding (same nb of q than k) is_causal = ~(cumulative_seqlens_q[1:] - cumulative_seqlens_q[:-1] == 1) * cumulative_seqlens_q[1:] apply_causal = torch.bucketize(q_indices, is_causal, right=True)[:, None] == k_doc_ids # TODO don't apply on prefill splitting causal_mask = torch.triu(torch.ones(total_q, total_k, device=q_doc_ids.device), diagonal=1).bool() doc_mask.masked_fill_((apply_causal & causal_mask), False) return doc_mask # Continuous Batch Processor (Internal Logic) @attach_tracer() class ContinuousBatchProcessor: def __init__( self, cache: PagedAttentionCache, config: PretrainedConfig, generation_config: GenerationConfig, input_queue: queue.Queue, output_queue: queue.Queue, stop_event: threading.Event, model_device: torch.device, model_dtype: torch.dtype, scheduler: Scheduler, streaming: bool = False, manual_eviction: bool = False, ): """Initialize the continuous batch processor. Args: cache: The paged attention cache to use generation_config: The generation configuration input_queue: Queue for incoming requests output_queue: Queue for outgoing results stop_event: Event to signal processing should stop model_device: Device for model inputs/outputs model_dtype: Data type for model inputs/outputs streaming: Whether to stream tokens as they're generated """ self.cache = cache self.config = config self.generation_config = generation_config self.input_queue = input_queue self.output_queue = output_queue self.stop_event = stop_event self.model_device = model_device self.model_dtype = model_dtype self.scheduler = scheduler self.streaming = streaming self.manual_eviction = manual_eviction self.requests_in_batch: list[RequestState] = [] # Get batch size parameters from generation config self._configure_batch_parameters() # Set up metrics collector self.metrics = ContinuousBatchProcessorMetrics(self.max_batch_tokens) self.setup_static_tensors() self.tokenizer = Tokenizer.from_pretrained(self.config._name_or_path) self.decode_stream = DecodeStream(skip_special_tokens=True) @traced(standalone=True) def setup_static_tensors(self): T = self.max_batch_tokens max_token_budget = self.cache.num_blocks * self.cache.block_size tensor_metadata = {"dtype": torch.int32, "device": self.model_device} self.tensor_metadata = tensor_metadata self.input_ids = torch.zeros((1, T), **tensor_metadata) self.position_ids = torch.zeros((1, T), **tensor_metadata) self.attention_mask = torch.zeros( (1, 1, T, max_token_budget), dtype=self.model_dtype, device=self.model_device ) self.cumulative_seqlens_q = torch.zeros((T + 1,), **tensor_metadata) self.cumulative_seqlens_k = torch.zeros((T + 1,), **tensor_metadata) self.write_index = torch.zeros((T,), **tensor_metadata) self.read_index = torch.zeros((max_token_budget,), **tensor_metadata) self.logits_indices = torch.full((T,), -1, **tensor_metadata) self.max_seqlen_q = 0 self.max_seqlen_k = 0 self.output_ids = torch.full((1, T), -1, **tensor_metadata) @traced @torch.no_grad() def reset_static_tensors(self): """Reset static tensors for the next batch.""" self.input_ids.zero_() self.position_ids.zero_() self.attention_mask.fill_(torch.finfo(self.model_dtype).min) self.cumulative_seqlens_q.zero_() self.cumulative_seqlens_k.zero_() self.write_index.fill_(-1) self.read_index.fill_(-1) self.logits_indices.fill_(-1) self.max_seqlen_q = 0 self.max_seqlen_k = 0 self.output_ids.zero_() def get_model_kwargs(self) -> PagedAttentionArgs: """Get model keyword arguments for the current batch.""" # torch.set_printoptions(threshold=100000,linewidth=10000) return { "input_ids": self.input_ids, "position_ids": self.position_ids, "attention_mask": self.attention_mask, "cumulative_seqlens_q": self.cumulative_seqlens_q, "cumulative_seqlens_k": self.cumulative_seqlens_k, "write_index": self.write_index, "read_index": self.read_index, "logits_indices": self.logits_indices, "max_seqlen_q": self.max_seqlen_q, "max_seqlen_k": self.max_seqlen_k, "block_tables": self.cache._block_tables, "cache": self.cache, "use_cache": False, } def __repr__(self): return ( f"ContinuousBatchProcessor(input_queue={self.input_queue}, output_queue={self.output_queue}, active_requests={self.scheduler.active_requests}, waiting_requests={self.scheduler.waiting_requests})" + self.get_model_kwargs().__repr__() ) @traced(standalone=True) def _configure_batch_parameters(self): """Set up batch processing parameters based on generation config.""" # Calculate total cache capacity total_cache_tokens = self.cache.num_blocks * self.cache.block_size # Get or calculate max tokens per batch user_batch_tokens = getattr(self.generation_config, "max_batch_tokens", None) if user_batch_tokens is not None: self.max_batch_tokens = user_batch_tokens else: # Default to 1/8 of total cache capacity, adjusted for context self.max_context_len = getattr(self.generation_config, "max_position_embeddings", 2048) recommended_batch_size = min(total_cache_tokens // 8, self.max_context_len) self.max_batch_tokens = max(64, recommended_batch_size) # Context length and EOS token self.max_context_len = getattr(self.generation_config, "max_position_embeddings", 2048) @traced def _get_new_requests(self): """Pull new requests from the input queue and add to waiting list.""" while not self.input_queue.empty(): try: state = self.input_queue.get_nowait() if state is None: # Sentinel value continue self.scheduler.add_waiting_request(state) except queue.Empty: break except Exception as e: logger.error(f"Error processing new request: {e}", exc_info=True) state: RequestState = locals().get("state") if state is not None: self._handle_request_error(e, state) @traced def _handle_request_error(self, error, state: RequestState): """Handle general request processing error.""" state.status = RequestStatus.FAILED state.error = str(error) # Include any generated tokens if this is an active request if isinstance(state.request_id, str): state.static_outputs = self.scheduler.get_active_request_static_outputs(state.request_id) else: state.static_outputs = [] self.metrics.record_request_completion(state.created_time, state.request_id) self.output_queue.put(state.to_generation_output()) @traced def prepare_next_batch(self): """Prepare tensors and metadata for the next model forward pass.""" # Get new requests from the queue self._get_new_requests() if not self.scheduler.has_pending_requests(): return None self.metrics.record_queue_metrics(len(self.scheduler.active_requests), len(self.scheduler.waiting_requests)) self.requests_in_batch = self.scheduler.schedule_batch(self.max_batch_tokens) if not self.requests_in_batch: return None # Get the request objects for this batch self.reset_static_tensors() position_ids = [] input_ids = [] read_index = [] write_index = [] cumulative_seqlens_q = [0] cumulative_seqlens_k = [0] logits_indices = [] self.metrics.record_batch_metrics(self.requests_in_batch) for state in self.requests_in_batch: next_input_ids = state.prompt_ids input_ids.extend(next_input_ids) past_length = state.position_offset query_length = len(next_input_ids) key_length = query_length + past_length cache_index = list(range(key_length)) positions_to_add = cache_index[past_length:] read_indices = self.cache._get_physical_indices(state, cache_index) write_indices = read_indices[-query_length:] position_ids.extend(positions_to_add) read_index.extend(read_indices) write_index.extend(write_indices) cumulative_seqlens_q.append(cumulative_seqlens_q[-1] + query_length) cumulative_seqlens_k.append(cumulative_seqlens_k[-1] + key_length) if len(state.remaining_prompt_ids) == 0: logits_indices.append(cumulative_seqlens_q[-1] - 1) self.max_seqlen_q = max(self.max_seqlen_q, query_length) self.max_seqlen_k = max(self.max_seqlen_k, key_length) state.position_offset += query_length logger.info( f"Scheduled: {len(self.requests_in_batch)}, Waiting: {len(self.scheduler.waiting_requests)}, Active: {len(self.scheduler.active_requests)}. cum Q: {cumulative_seqlens_q[-1]}. cum KV: {cumulative_seqlens_k[-1]}, free blocks: {self.cache.get_num_free_blocks()}" ) self._build_tensors( input_ids, position_ids, read_index, write_index, cumulative_seqlens_q, cumulative_seqlens_k, logits_indices, ) self.metrics.record_kv_cache_memory_metrics(self.cache) @traced def _build_tensors( self, input_ids, position_ids, read_index, write_index, cumulative_seqlens_q, cumulative_seqlens_k, logits_indices, ): to_tensor = partial(torch.tensor, **self.tensor_metadata) self.input_ids[:, : len(input_ids)] = to_tensor(input_ids) self.position_ids[:, : len(position_ids)] = to_tensor(position_ids) self.write_index[: len(write_index)] = to_tensor(write_index) self.read_index[: len(read_index)] = to_tensor(read_index) self.cumulative_seqlens_q[: len(cumulative_seqlens_q)] = to_tensor(cumulative_seqlens_q) self.cumulative_seqlens_k[: len(cumulative_seqlens_k)] = to_tensor(cumulative_seqlens_k) self.logits_indices[: len(logits_indices)] = to_tensor(logits_indices) min_value = torch.finfo(self.model_dtype).min if self.config._attn_implementation != "paged_attention": # we set `is_causal` to True in paged call` for i in range(len(cumulative_seqlens_q) - 1): if ( cumulative_seqlens_q[i + 1] - cumulative_seqlens_q[i] < cumulative_seqlens_k[i + 1] - cumulative_seqlens_k[i] and cumulative_seqlens_q[i + 1] - cumulative_seqlens_q[i] >= 1 ): diagonal = ( cumulative_seqlens_k[i + 1] - (cumulative_seqlens_q[i + 1] - cumulative_seqlens_q[i]) + 1 ) diagonal = diagonal - cumulative_seqlens_k[i] else: diagonal = 1 query_range = slice(cumulative_seqlens_q[i], cumulative_seqlens_q[i + 1]) key_range = slice(cumulative_seqlens_k[i], cumulative_seqlens_k[i + 1]) mask = torch.triu( torch.full( self.attention_mask[..., query_range, key_range].shape, min_value, dtype=self.model_dtype, device=self.model_device, ), diagonal=diagonal, ) self.attention_mask[..., query_range, key_range] = mask @traced def _sync(self): return self.output_ids.tolist()[0] # should be the only synch we do @traced def _maybe_send_output(self, state: RequestState, token: int): """Send output to the queue based on streaming mode and request state.""" if self.streaming: state.next_token = self.decode_stream.step(self.tokenizer, state.static_outputs[-1]) self.output_queue.put(state.to_generation_output()) elif state.status == RequestStatus.FINISHED: self.output_queue.put(state.to_generation_output()) @traced def update_batch(self): """Update request states based on generated tokens.""" out_tokens = self._sync() finished_request_ids = [] for i, state in enumerate(self.requests_in_batch): req_id = state.request_id if len(state.remaining_prompt_ids) == 0: self.metrics.record_ttft_metric(state.created_time, state.request_id) state.status = RequestStatus.DECODING token = out_tokens[self.logits_indices[i]] state.prompt_ids = [token] if state.update_with_token(token): self.metrics.record_request_completion(state.created_time, state.request_id) self.scheduler.finish_request(state.request_id, evict_from_cache=(not self.manual_eviction)) finished_request_ids.append(req_id) self._maybe_send_output(state, token) elif state.status == RequestStatus.PREFILLING_SPLIT: state.status = RequestStatus.SPLIT_PENDING_REMAINDER @traced def has_pending_requests(self) -> bool: """Check if there are any active or waiting requests.""" return self.scheduler.has_pending_requests() @traced def handle_batch_error(self, error): """Handle errors during batch processing.""" failed_reqs = self.requests_in_batch for req in failed_reqs: self._handle_request_error(error, req) self.scheduler.finish_request(req.request_id) @traced def fail_all_requests(self, error): """Fail all active requests with the given error. Args: error: The error to report in the failure message """ for state in self.scheduler.active_requests.values(): self._handle_request_error(error, state) self.scheduler.finish_request(state.request_id) # Also fail any requests in the waiting queue for req_id in list(self.scheduler.waiting_requests.keys()): state = self.scheduler.waiting_requests.pop(req_id) self._handle_request_error(error, state) # Clear the ordering queue self.scheduler.waiting_requests_order.clear() SCHEDULER_MAPPING = { "fifo": FIFOScheduler, "prefill_first": PrefillFirstScheduler, } # Manager Class (User Interface) @attach_tracer() class ContinuousBatchingManager: """Manager for handling continuous batching of generation requests. This class provides the user interface for submitting generation requests, retrieving results, and managing the background generation thread. """ def __init__( self, model, generation_config: GenerationConfig, manual_eviction: bool = False, max_queue_size=0, streaming: bool = True, ): """Initialize the continuous batching manager. Args: model: The language model for generation generation_config: Configuration for generation parameters max_queue_size: Maximum size of the request queue (0 = unlimited) streaming: Whether to stream tokens as they are generated """ self.model = model self.generation_config = generation_config self.input_queue = queue.Queue(maxsize=max_queue_size) self.output_queue = queue.Queue() self.stop_event = threading.Event() self.streaming = streaming self.log_prob_generation = getattr(generation_config, "log_prob_generation", False) self._generation_thread = None self._request_counter = 0 self._request_lock = threading.Lock() self.model.generation_config.top_p = None self.do_sample = getattr(generation_config, "do_sample", True) generation_config = model.generation_config if generation_config is None else generation_config self.logit_processor = self.model._get_logits_processor(generation_config) self.use_cuda_graph = getattr(generation_config, "use_cuda_graph", True) self.profile = getattr(generation_config, "profile", False) self.manual_eviction = manual_eviction self.batch_processor: Optional[ContinuousBatchProcessor] = None self.decode_stream = DecodeStream(skip_special_tokens=True) @traced def start(self): """Start the background generation thread.""" if self._generation_thread is not None and self._generation_thread.is_alive(): logger.warning("Manager thread is already running.") return self._result_queue = queue.Queue() self._generation_thread = threading.Thread(target=self._run_generation_loop) self._generation_thread.start() logger.info("Continuous batching manager started.") def is_running(self): """Check if the background generation thread is running.""" return self._generation_thread is not None and self._generation_thread.is_alive() def stop(self, block: bool = False, timeout: Optional[float] = None): """Signal the background thread to stop. Args: block: Whether to wait for the thread to stop timeout: Maximum time to wait for the thread to stop """ if self._generation_thread is None: logger.warning("Manager not started.") return if not self.stop_event.is_set(): self.stop_event.set() logger.info("Stopping continuous batching manager...") if block: self.join(timeout) def join(self, timeout: Optional[float] = None): """Wait for the background thread to finish. Args: timeout: Maximum time to wait for the thread to stop """ if self._generation_thread is not None: self._generation_thread.join(timeout=timeout) if self._generation_thread.is_alive(): logger.warning("Generation thread did not exit after join timeout.") else: logger.info("Continuous Batching Manager stopped.") self._generation_thread = None def add_request( self, input_ids: list[int], request_id: Optional[str] = None, max_new_tokens: Optional[int] = None ) -> str: """Add a new generation request to the queue. Args: input_ids: Input token IDs to use as prompt request_id: Optional custom request ID (auto-generated if None) **kwargs: Additional generation parameters Returns: str: The request ID """ if request_id is None: with self._request_lock: request_id = f"req_{self._request_counter}" self._request_counter += 1 max_new_tokens = self.generation_config.max_new_tokens if max_new_tokens is None else max_new_tokens state = RequestState( request_id=request_id, prompt_ids=list(input_ids), full_prompt_ids=list(input_ids), max_new_tokens=max_new_tokens, eos_token_id=self.generation_config.eos_token_id, ) # Use block=True with timeout to handle backpressure if queue is full self.input_queue.put(state, block=True, timeout=10) # XXX: pass timeout as fn arg? logger.debug(f"Added request {request_id} to queue.") return request_id def add_requests(self, inputs: list[list[int]], **kwargs): for i, input_ids in enumerate(inputs): # Assign a predictable request ID for ordering results later req_id = f"batch_req_{i}" self.add_request(input_ids, request_id=req_id, **kwargs) def get_result(self, timeout=None) -> Optional[GenerationOutput]: """Retrieve one result from the output queue. Args: timeout: Maximum time to wait for a result Returns: Optional[Dict]: The result data or None if timeout """ if self._generation_thread is None and self.output_queue.empty(): return None try: result = self.output_queue.get(block=True, timeout=timeout) logger.debug(f"Retrieved result for request {result.request_id}") return result except queue.Empty: return None def __iter__(self): """Iterate over results as they become available.""" while ( self._generation_thread is not None and self._generation_thread.is_alive() or not self.output_queue.empty() ): result = self.get_result(timeout=0.1) # allow the model to run for 10 seconds if result is not None: yield result @traced def warmup(self, batch_processor): stream = torch.cuda.Stream() stream.wait_stream(torch.cuda.current_stream()) with torch.cuda.stream(stream): # Warmup the model with a dummy forward pass self._generation_step(batch_processor) torch.cuda.current_stream().wait_stream(stream) self.graph = torch.cuda.CUDAGraph() with torch.cuda.graph(self.graph): self._generation_step(batch_processor) @traced # @torch.compile def _generation_step(self, batch_processor: ContinuousBatchProcessor): """Perform a single generation step. This is cuda graphed""" batch_data = batch_processor.get_model_kwargs() with torch.no_grad(): logits = self._model_forward(batch_data) if self.log_prob_generation: batch_processor.output_probs.copy_(logits) # TODO probs = self._process_logit(batch_data, logits) self._sample(batch_processor, probs) @traced(span_name="model_forward") def _model_forward(self, batch_data): return self.model(**batch_data).logits @traced(span_name="logit_processing") def _process_logit(self, batch_data, logits): # Pass continuous batching context to logits processor if it supports it. TODO we should find a way to make this a little bit cleaner! if hasattr(self.logit_processor, "set_continuous_batching_context"): self.logit_processor.set_continuous_batching_context( batch_data["logits_indices"], batch_data["cumulative_seqlens_q"] ) return self.logit_processor(batch_data["input_ids"], logits) @traced(span_name="sampling") def _sample(self, batch_processor: ContinuousBatchProcessor, probs): if self.do_sample: # sample probs = nn.functional.softmax(probs, dim=-1) next_tokens = torch.multinomial(probs[0], num_samples=1).squeeze(1) else: next_tokens = torch.argmax(probs, dim=-1) batch_processor.output_ids.copy_(next_tokens) def _run_generation_loop(self): """Main processing loop running in the background thread.""" batch_processor = None try: paged_attention_cache = PagedAttentionCache( self.model.config, self.generation_config, self.model.device, self.model.dtype, tp_size=getattr(self.model, "tp_size"), ) scheduler = None if hasattr(self.generation_config, "scheduler"): scheduler = SCHEDULER_MAPPING.get(self.generation_config.scheduler) if scheduler is None: logger.warning(f"Scheduler '{scheduler}' not found. Defaulting to FIFO.") scheduler = FIFOScheduler else: # Default to fifo scheduler = FIFOScheduler batch_processor = ContinuousBatchProcessor( paged_attention_cache, self.model.config, self.generation_config, self.input_queue, self.output_queue, self.stop_event, self.model.device, self.model.dtype, scheduler(paged_attention_cache, self.manual_eviction), self.streaming, self.manual_eviction, ) self.batch_processor = batch_processor is_first = True if self.profile: tracing_schedule = schedule(skip_first=2, warmup=3, active=200, repeat=100, wait=1) trace_handler = tensorboard_trace_handler( dir_name="/fsx/arthur/transformers", use_gzip=True, worker_name="paged_compile" ) activities = [ torch.profiler.ProfilerActivity.CPU, torch.profiler.ProfilerActivity.CUDA, ] with profile( activities=activities, schedule=tracing_schedule, on_trace_ready=trace_handler, record_shapes=False, with_stack=True, ) as prof: while not self.stop_event.is_set() or batch_processor.has_pending_requests(): self._inner_generation_loop(batch_processor, is_first) if is_first: is_first = False prof.step() else: while not self.stop_event.is_set() or batch_processor.has_pending_requests(): self._inner_generation_loop(batch_processor, is_first) if is_first: is_first = False except Exception as e: logger.error(f"Error in generation loop: {e}", exc_info=True) self._handle_critical_error(e, batch_processor) finally: logger.info("Generation loop finished.") @traced(span_name="generation_loop") def _inner_generation_loop(self, batch_processor: ContinuousBatchProcessor, is_first: bool = False): if torch.cuda.is_available(): torch.cuda.synchronize() batch_processor.prepare_next_batch() if torch.cuda.is_available() and self.use_cuda_graph: if is_first: self.warmup(batch_processor) elif hasattr(self, "graph"): try: self._graph_replay() except Exception as e: logger.error(f"Model forward pass failed: {e}", exc_info=True) batch_processor.handle_batch_error(e) return else: self._generation_step(batch_processor) else: self._generation_step(batch_processor) if torch.cuda.is_available(): torch.cuda.synchronize() batch_processor.update_batch() @traced(span_name="graph_replay") def _graph_replay(self): self.graph.replay() @traced def _handle_critical_error(self, error, batch_processor: Optional[ContinuousBatchProcessor]): """Handle critical errors that terminate the generation loop.""" # Signal stop self.stop_event.set() # Fail pending requests in input queue try: while True: req_data = self.input_queue.get_nowait() if batch_processor is not None: batch_processor._handle_request_error(error, req_data) except queue.Empty: pass # Fail active requests if batch_processor is not None: batch_processor.fail_all_requests(error) @traced def evict_request_from_cache(self, request_id: str): """Evict a request from the cache. It is assumed that the request is already finished.""" if not self.manual_eviction: raise RuntimeError("Manual eviction is not enabled for this manager.") if self.batch_processor is not None: self.batch_processor.scheduler.finish_request(request_id) class ContinuousMixin: """Mixin class for models to add continuous batching capabilities.""" def init_continuous_batching( self, generation_config: Optional[GenerationConfig] = None, manual_eviction: bool = False, max_queue_size: int = 0, streaming: bool = False, ) -> ContinuousBatchingManager: """Initialize a manager for continuous batching inference. Args: generation_config: Custom generation configuration max_queue_size: Maximum size of the input request queue streaming: Whether to stream tokens as they are generated Returns: `ContinuousBatchingManager`: The manager instance to add requests and retrieve results. """ if not hasattr(self, "config") or not hasattr(self, "device") or not hasattr(self, "dtype"): raise AttributeError("Model must have 'config', 'device', and 'dtype' attributes.") gen_config = generation_config if generation_config is not None else self.generation_config if gen_config is None: raise ValueError("A GenerationConfig must be provided or set in the model.") if gen_config.eos_token_id is None: logger.warning("`eos_token_id` not set in GenerationConfig. Setting to -1 (disabled).") gen_config.eos_token_id = -1 # Create and return the manager return ContinuousBatchingManager( model=self, generation_config=gen_config, manual_eviction=manual_eviction, max_queue_size=max_queue_size, streaming=streaming, ) @traced @torch.inference_mode() def generate_batch( self, inputs: list[list[int]], generation_config: Optional[GenerationConfig] = None, progress_bar: bool = True, **kwargs, ) -> list[list[int]]: """Generate sequences for a batch of prompts using continuous batching. Args: inputs: List of input token sequences (prompts) generation_config: Optional generation configuration **kwargs: Additional generation parameters Returns: `list[list[int]]`: A list containing the generated sequences (including prompt tokens if not handled otherwise) for each input prompt, in the same order. Returns an empty list `[]` for requests that failed. """ if not inputs: return [] # Initialize manager with the batch inputs manager = self.init_continuous_batching(generation_config=generation_config) manager.start() results = {} num_requests = len(inputs) try: from tqdm.contrib.logging import logging_redirect_tqdm with logging_redirect_tqdm([logger]): with tqdm( total=num_requests, disable=(not progress_bar), desc=f"Solving {num_requests} requests", unit="request", ) as pbar: manager.add_requests(inputs, **kwargs) finished_count = 0 while finished_count < num_requests: result = manager.get_result(timeout=1) if result: req_id = result.request_id if result.status == RequestStatus.FINISHED: results[req_id] = result finished_count += 1 pbar.update(1) else: if not manager.is_running(): logger.error("Generation thread terminated unexpectedly.") break except Exception as e: logger.error(f"Error during batch generation: {e}", exc_info=True) finally: manager.stop(block=True, timeout=5.0) return results