# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/aimv2/modular_aimv2.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_aimv2.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 Apple Inc. and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from dataclasses import dataclass from typing import Any, Callable, Optional import torch import torch.nn.functional as F from torch import nn from ...activations import ACT2FN from ...integrations import use_kernel_forward_from_hub from ...masking_utils import create_causal_mask from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...utils import ModelOutput, auto_docstring, can_return_tuple from .configuration_aimv2 import Aimv2Config, Aimv2TextConfig, Aimv2VisionConfig @dataclass @auto_docstring class Aimv2Output(ModelOutput): r""" loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`): Contrastive loss for image-text similarity. logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`): The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text similarity scores. logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`): The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image similarity scores. text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`Aimv2TextModel`]. image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`Aimv2VisionModel`]. text_model_output (`BaseModelOutputWithPooling`): The output of the [`Aimv2TextModel`]. vision_model_output (`BaseModelOutputWithPooling`): The output of the [`Aimv2VisionModel`]. """ loss: Optional[torch.FloatTensor] = None logits_per_image: Optional[torch.FloatTensor] = None logits_per_text: Optional[torch.FloatTensor] = None text_embeds: Optional[torch.FloatTensor] = None image_embeds: Optional[torch.FloatTensor] = None text_model_output: BaseModelOutputWithPooling = None vision_model_output: BaseModelOutputWithPooling = None def to_tuple(self) -> tuple[Any]: return tuple( self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple() for k in self.keys() ) @use_kernel_forward_from_hub("RMSNorm") class Aimv2RMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Aimv2RMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class Aimv2MLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj class Aimv2VisionEmbeddings(nn.Module): def __init__(self, config: Aimv2VisionConfig): super().__init__() self.config = config self.patch_size = config.patch_size self.patch_embed = nn.Conv2d( config.num_channels, config.hidden_size, kernel_size=config.patch_size, stride=config.patch_size ) self.rms_norm = Aimv2RMSNorm(config.hidden_size, config.rms_norm_eps) num_patches = (config.image_size // config.patch_size) ** 2 if not self.config.is_native: self.position_embedding = nn.Embedding(num_patches, config.hidden_size) self.register_buffer("position_ids", torch.arange(num_patches).expand((1, -1)), persistent=False) @staticmethod def build_2d_sincos_position_embedding( height, width, embed_dim=256, temperature=10000.0, device="cpu", dtype=torch.float32 ) -> torch.Tensor: grid_w = torch.arange(int(width), dtype=dtype, device=device) grid_h = torch.arange(int(height), dtype=dtype, device=device) grid_h, grid_w = torch.meshgrid(grid_w, grid_h, indexing="xy") pos_dim = embed_dim // 4 omega = torch.arange(pos_dim, dtype=dtype, device=device) / pos_dim omega = 1.0 / (temperature**omega) out_h = grid_h.flatten()[..., None] @ omega[None, :] out_w = grid_w.flatten()[..., None] @ omega[None, :] return torch.concat([out_h.sin(), out_h.cos(), out_w.sin(), out_w.cos()], dim=1)[None, :, :] def forward(self, pixel_values: torch.Tensor) -> torch.Tensor: _, _, height, width = pixel_values.size() hidden_states = self.patch_embed(pixel_values).flatten(2).transpose(1, 2) hidden_states = self.rms_norm(hidden_states) if self.config.is_native: pos_embed = self.build_2d_sincos_position_embedding( height // self.patch_size, width // self.patch_size, embed_dim=self.config.hidden_size, device=hidden_states.device, dtype=hidden_states.dtype, ) else: pos_embed = self.position_embedding(self.position_ids) hidden_states = hidden_states + pos_embed return hidden_states class Aimv2TextEmbeddings(nn.Module): def __init__(self, config: Aimv2TextConfig): super().__init__() embed_dim = config.hidden_size self.token_embedding = nn.Embedding(config.vocab_size, embed_dim) self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) def forward( self, input_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, ) -> torch.Tensor: seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2] max_position_embedding = self.position_embedding.weight.shape[0] if seq_length > max_position_embedding: raise ValueError( f"Sequence length must be less than max_position_embeddings (got `sequence length`: " f"{seq_length} and max_position_embeddings: {max_position_embedding}" ) if position_ids is None: position_ids = self.position_ids[:, :seq_length] if inputs_embeds is None: inputs_embeds = self.token_embedding(input_ids) position_embeddings = self.position_embedding(position_ids) embeddings = inputs_embeds + position_embeddings return embeddings def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling if attention_mask is not None: attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class Aimv2Attention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads if self.head_dim * self.num_heads != self.embed_dim: raise ValueError( f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:" f" {self.num_heads})." ) self.scale = self.head_dim**-0.5 self.dropout = config.attention_dropout self.is_causal = False self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_bias) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_bias) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_bias) self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_bias) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, **kwargs, ) -> tuple[torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" batch_size, seq_length, embed_dim = hidden_states.shape queries = self.q_proj(hidden_states) keys = self.k_proj(hidden_states) values = self.v_proj(hidden_states) queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, queries, keys, values, attention_mask, is_causal=self.is_causal, scaling=self.scale, dropout=0.0 if not self.training else self.dropout, ) attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous() attn_output = self.out_proj(attn_output) return attn_output, attn_weights class Aimv2EncoderLayer(GradientCheckpointingLayer): def __init__(self, config: Aimv2VisionConfig): super().__init__() self.attention = Aimv2Attention(config) self.ffn = Aimv2MLP(config) self.rms_norm1 = Aimv2RMSNorm(config.hidden_size, config.rms_norm_eps) self.rms_norm2 = Aimv2RMSNorm(config.hidden_size, config.rms_norm_eps) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = False, ) -> tuple[torch.Tensor, torch.Tensor]: norm_hidden_states = self.rms_norm1(hidden_states) attn_output, attn_weights = self.attention(hidden_states=norm_hidden_states, attention_mask=attention_mask) hidden_states = hidden_states + attn_output norm_hidden_states = self.rms_norm2(hidden_states) mlp_output = self.ffn(norm_hidden_states) hidden_states = hidden_states + mlp_output return (hidden_states, attn_weights) if output_attentions else (hidden_states, None) class Aimv2Encoder(nn.Module): """ Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a [`Aimv2EncoderLayer`]. Args: config: Aimv2Config """ def __init__(self, config: Aimv2Config): super().__init__() self.config = config self.layers = nn.ModuleList([Aimv2EncoderLayer(config) for _ in range(config.num_hidden_layers)]) self.gradient_checkpointing = False # Ignore copy @can_return_tuple def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> BaseModelOutput: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This is useful if you want more control over how to convert `input_ids` indices into associated vectors than the model's internal embedding lookup matrix. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + (hidden_states,) layer_outputs = encoder_layer( hidden_states, attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions, ) class Aimv2AttentionPoolingHead(nn.Module): def __init__(self, config: Aimv2VisionConfig): super().__init__() self.hidden_size = config.hidden_size self.num_heads = config.num_attention_heads self.k_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.qkv_bias) self.v_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.qkv_bias) self.cls_token = nn.Parameter(torch.zeros(1, 1, self.hidden_size)) self.output_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: batch_size, seq_len, hidden_dim = hidden_states.shape cls_token = self.cls_token.expand(batch_size, -1, -1) key = self.k_proj(hidden_states).reshape(batch_size, seq_len, self.num_heads, hidden_dim // self.num_heads) value = self.v_proj(hidden_states).reshape(batch_size, seq_len, self.num_heads, hidden_dim // self.num_heads) query = cls_token.reshape(batch_size, 1, self.num_heads, hidden_dim // self.num_heads) key = key.permute(0, 2, 1, 3) value = value.permute(0, 2, 1, 3) query = query.permute(0, 2, 1, 3) attn_output = F.scaled_dot_product_attention(query, key, value) attn_output = attn_output.transpose(1, 2).reshape(batch_size, 1, hidden_dim) attn_output = attn_output.mean(dim=1) output = self.output_proj(attn_output) return output @auto_docstring class Aimv2PreTrainedModel(PreTrainedModel): """ An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained models. The model is only intended for inference and doesn't support finetuning. """ config: Aimv2Config base_model_prefix = "aimv2" supports_gradient_checkpointing = True _no_split_modules = [ "Aimv2EncoderLayer", "Aimv2AttentionPoolingHead", "Aimv2VisionEmbeddings", "Aimv2TextEmbeddings", ] _supports_sdpa = True _supports_flash_attn = True _supports_flex_attn = True def _init_weights(self, module): super()._init_weights(module) if hasattr(module, "logit_scale"): if isinstance(module.logit_scale, nn.Parameter): module.logit_scale.data.fill_(math.log(1 / 0.07)) elif isinstance(module, Aimv2AttentionPoolingHead): module.cls_token.data.normal_(mean=0.0, std=self.config.initializer_range) @auto_docstring( custom_intro=""" The Vision model from AIMv2 without any head or projection on top. """ ) class Aimv2VisionModel(Aimv2PreTrainedModel): config: Aimv2VisionConfig main_input_name = "pixel_values" def __init__(self, config: Aimv2VisionConfig): super().__init__(config) self.config = config self.embeddings = Aimv2VisionEmbeddings(config) self.encoder = Aimv2Encoder(config) # The only change from SiglipVisionTransformer is, layernorm -> rms_norm. self.rms_norm = Aimv2RMSNorm(config.hidden_size, config.rms_norm_eps) self.use_head = config.use_head if self.use_head: self.head = Aimv2AttentionPoolingHead(config) self.post_init() def get_input_embeddings(self) -> nn.Module: return self.embeddings.patch_embed @can_return_tuple @auto_docstring def forward( self, pixel_values, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> BaseModelOutputWithPooling: r""" Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Siglip2VisionModel >>> model = Aimv2VisionModel.from_pretrained("apple/aimv2-large-patch14-native") >>> processor = AutoProcessor.from_pretrained("apple/aimv2-large-patch14-native") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> outputs = model(**inputs) >>> last_hidden_state = outputs.last_hidden_state >>> pooled_output = outputs.pooler_output # pooled features ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) hidden_states = self.embeddings(pixel_values) encoder_outputs = self.encoder( inputs_embeds=hidden_states, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.rms_norm(last_hidden_state) pooler_output = self.head(last_hidden_state) if self.use_head else None return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooler_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) @auto_docstring( custom_intro=""" The text model from AIMv2 without any head or projection on top. """ ) class Aimv2TextModel(Aimv2PreTrainedModel): main_input_name = "input_ids" def __init__(self, config: Aimv2TextConfig): super().__init__(config) self.config = config self.embeddings = Aimv2TextEmbeddings(config) self.encoder = Aimv2Encoder(config) self.rms_norm = Aimv2RMSNorm(config.hidden_size, config.rms_norm_eps) self.eos_token_id = config.eos_token_id self.post_init() def get_input_embeddings(self) -> nn.Module: return self.embeddings.token_embedding def set_input_embeddings(self, value): self.embeddings.token_embedding = value @can_return_tuple @auto_docstring def forward( self, input_ids, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> BaseModelOutputWithPooling: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) hidden_states = self.embeddings(input_ids) batch_size, seq_len, _ = hidden_states.shape cache_position = torch.arange(seq_len, dtype=torch.long, device=hidden_states.device) position_ids = cache_position.unsqueeze(0).expand(batch_size, -1) if attention_mask is not None: attention_mask = create_causal_mask( config=self.config, input_embeds=hidden_states, position_ids=position_ids, attention_mask=attention_mask, cache_position=cache_position, past_key_values=None, ) encoder_outputs = self.encoder( inputs_embeds=hidden_states, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) last_hidden_state = encoder_outputs[0] last_hidden_state = self.rms_norm(last_hidden_state) # Get pooled output pooled_output = last_hidden_state[ torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device), (input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id).int().argmax(dim=-1), ] return BaseModelOutputWithPooling( last_hidden_state=last_hidden_state, pooler_output=pooled_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, ) def _get_vector_norm(tensor: torch.Tensor) -> torch.Tensor: """ This method is equivalent to tensor.norm(p=2, dim=-1, keepdim=True) and used to make model `executorch` exportable. See issue https://github.com/pytorch/executorch/issues/3566 """ square_tensor = torch.pow(tensor, 2) sum_tensor = torch.sum(square_tensor, dim=-1, keepdim=True) normed_tensor = torch.pow(sum_tensor, 0.5) return normed_tensor @auto_docstring class Aimv2Model(Aimv2PreTrainedModel): config: Aimv2Config _no_split_modules = ["Aimv2TextEmbeddings", "Aimv2EncoderLayer", "Aimv2VisionEmbeddings"] def __init__(self, config: Aimv2Config): super().__init__(config) self.projection_dim = config.projection_dim self.vision_embed_dim = config.vision_config.hidden_size self.text_embed_dim = config.text_config.hidden_size self.vision_model = Aimv2VisionModel._from_config(config.vision_config) self.text_model = Aimv2TextModel._from_config(config.text_config) self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False) self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False) self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value)) self.max_log_logit_scale = math.log(config.max_logit_scale) self.post_init() @auto_docstring def get_text_features( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> torch.FloatTensor: r""" Returns: text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by applying the projection layer to the pooled output of [`Aimv2TextModel`]. Examples: ```python >>> from transformers import AutoTokenizer, Aimv2Model >>> model = Aimv2Model.from_pretrained("openai/aimv2-vit-base-patch32") >>> tokenizer = AutoTokenizer.from_pretrained("openai/aimv2-vit-base-patch32") >>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt") >>> text_features = model.get_text_features(**inputs) ```""" # Use AIMV2 model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) text_outputs: BaseModelOutputWithPooling = self.text_model( input_ids=input_ids, attention_mask=attention_mask, position_ids=position_ids, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) pooled_output = text_outputs.pooler_output text_features = self.text_projection(pooled_output) return text_features @auto_docstring def get_image_features( self, pixel_values: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: bool = False, ) -> torch.FloatTensor: r""" Returns: image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by applying the projection layer to the pooled output of [`Aimv2VisionModel`]. Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Aimv2Model >>> model = Aimv2Model.from_pretrained("openai/aimv2-vit-base-patch32") >>> processor = AutoProcessor.from_pretrained("openai/aimv2-vit-base-patch32") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(images=image, return_tensors="pt") >>> image_features = model.get_image_features(**inputs) ```""" # Use AIMV2 model's config for some fields (if specified) instead of those of vision & text components. output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) vision_outputs: BaseModelOutputWithPooling = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, ) pooled_output = vision_outputs.pooler_output image_features = self.visual_projection(pooled_output) return image_features @auto_docstring @can_return_tuple def forward( self, input_ids: Optional[torch.LongTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, attention_mask: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, ) -> Aimv2Output: r""" Examples: ```python >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, Aimv2Model >>> model = Aimv2Model.from_pretrained("apple/aimv2-large-patch14-224-lit") >>> processor = AutoProcessor.from_pretrained("apple/aimv2-large-patch14-224-lit") >>> url = "http://images.cocodataset.org/val2017/000000039769.jpg" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor( ... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True ... ) >>> outputs = model(**inputs) >>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score >>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) vision_outputs: BaseModelOutputWithPooling = self.vision_model( pixel_values=pixel_values, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) text_outputs: BaseModelOutputWithPooling = self.text_model( input_ids=input_ids, attention_mask=attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, ) image_embeds = vision_outputs.pooler_output image_embeds = self.visual_projection(image_embeds) text_embeds = text_outputs.pooler_output text_embeds = self.text_projection(text_embeds) # normalized features image_embeds = image_embeds / _get_vector_norm(image_embeds) text_embeds = text_embeds / _get_vector_norm(text_embeds) logit_scale = self.logit_scale.clamp(0.0, self.max_log_logit_scale).exp().to(text_embeds.device) logits_per_text = (logit_scale * text_embeds) @ image_embeds.t() logits_per_image = logits_per_text.t() return Aimv2Output( logits_per_image=logits_per_image, logits_per_text=logits_per_text, text_embeds=text_embeds, image_embeds=image_embeds, text_model_output=text_outputs, vision_model_output=vision_outputs, ) __all__ = ["Aimv2VisionModel", "Aimv2Model", "Aimv2PreTrainedModel", "Aimv2TextModel"]