# coding=utf-8 # Copyright 2024 Mistral and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch Pixtral model.""" from collections.abc import Callable from typing import Optional, Union import torch import torch.utils.checkpoint from torch import nn from ...activations import ACT2FN from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import BaseModelOutput from ...modeling_rope_utils import dynamic_rope_update from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel from ...processing_utils import Unpack from ...utils import auto_docstring, can_return_tuple, logging from .configuration_pixtral import PixtralVisionConfig logger = logging.get_logger(__name__) def position_ids_in_meshgrid(patch_embeds_list, max_width): positions = [] for patch in patch_embeds_list: height, width = patch.shape[-2:] mesh = torch.meshgrid(torch.arange(height), torch.arange(width), indexing="ij") h_grid, v_grid = torch.stack(mesh, dim=-1).reshape(-1, 2).chunk(2, -1) ids = h_grid * max_width + v_grid positions.append(ids[:, 0]) return torch.cat(positions) class PixtralRotaryEmbedding(nn.Module): """ The key with pixtral embedding is just that you have a frequency for each pixel positions. If you have height x width pixels (or embedding pixels), then the frequency used for ROPE is given by indexing the pre_computed frequency on the width and height. What you output is of dimension (batch, height * width, dim) with dim the embed dim. This simply means that for each image hidden state, you are going to add a corresponding positional embedding, based on its index in the grid. """ def __init__(self, config, device=None): super().__init__() self.rope_type = "default" self.dim = config.head_dim self.base = config.rope_theta max_patches_per_side = config.image_size // config.patch_size freqs = 1.0 / (self.base ** (torch.arange(0, self.dim, 2).float() / self.dim)) h = torch.arange(max_patches_per_side, device=freqs.device) w = torch.arange(max_patches_per_side, device=freqs.device) freqs_h = torch.outer(h, freqs[::2]).float() freqs_w = torch.outer(w, freqs[1::2]).float() inv_freq = torch.cat( [ freqs_h[:, None, :].repeat(1, max_patches_per_side, 1), freqs_w[None, :, :].repeat(max_patches_per_side, 1, 1), ], dim=-1, ).reshape(-1, self.dim // 2) # we reshape to only index on the position indexes, not tuple of indexes # Different from paper, but it uses a different permutation in order to obtain the same calculation # TODO maybe make it torch compatible later on. We can also just slice self.register_buffer("inv_freq", torch.cat((inv_freq, inv_freq), dim=-1), persistent=False) @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): freqs = self.inv_freq[position_ids] device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 emb = freqs cos = emb.cos() sin = emb.sin() return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) # Copied from transformers.models.llama.modeling_llama.rotate_half def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed # Copied from transformers.models.siglip.modeling_siglip.eager_attention_forward def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs, ): attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling if attention_mask is not None: attn_weights = attn_weights + attention_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class PixtralAttention(nn.Module): """ Multi-headed attention compatible with ALL_ATTENTION_FUNCTIONS. """ def __init__(self, config): super().__init__() self.config = config self.embed_dim = config.hidden_size self.num_heads = config.num_attention_heads self.head_dim = self.embed_dim // self.num_heads self.is_causal = False self.scaling = self.head_dim**-0.5 self.is_causal = False self.dropout = config.attention_dropout self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) self.o_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=False) def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.Tensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, output_attentions: Optional[bool] = False, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor]]: """Input shape: Batch x Time x Channel""" batch_size, patches, _ = hidden_states.size() query_states = self.q_proj(hidden_states) key_states = self.k_proj(hidden_states) value_states = self.v_proj(hidden_states) query_states = query_states.view(batch_size, patches, self.num_heads, self.head_dim).transpose(1, 2) key_states = key_states.view(batch_size, patches, self.num_heads, self.head_dim).transpose(1, 2) value_states = value_states.view(batch_size, patches, self.num_heads, self.head_dim).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, unsqueeze_dim=0) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": if self.config._attn_implementation == "sdpa" and output_attentions: logger.warning_once( "`torch.nn.functional.scaled_dot_product_attention` does not support `output_attentions=True`. Falling back to " 'eager attention. This warning can be removed using the argument `attn_implementation="eager"` when loading the model.' ) else: attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] # Since we use packing, if flash_attention_2 is selected we rely on position_ids if self.config._attn_implementation == "flash_attention_2": kwargs["position_ids"] = kwargs["position_ids"].to(hidden_states.device, non_blocking=True) attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(batch_size, patches, -1).contiguous() attn_output = self.o_proj(attn_output) if not output_attentions: attn_weights = None return attn_output, attn_weights # Copied from transformers.models.mistral.modeling_mistral.MistralMLP with Mistral->Pixtral class PixtralMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj # Copied from transformers.models.llama.modeling_llama.LlamaRMSNorm with Llama->Pixtral class PixtralRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ PixtralRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class PixtralAttentionLayer(GradientCheckpointingLayer): def __init__(self, config): super().__init__() self.attention_norm = PixtralRMSNorm(config.hidden_size, eps=1e-5) self.feed_forward = PixtralMLP(config) self.attention = PixtralAttention(config) self.ffn_norm = PixtralRMSNorm(config.hidden_size, eps=1e-5) def forward( self, hidden_states: torch.Tensor, attention_mask: torch.Tensor, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, output_attentions: Optional[bool] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.FloatTensor]: """ Args: hidden_states (`torch.FloatTensor`): Input to the layer of shape `(batch, seq_len, embed_dim)`. attention_mask (`torch.FloatTensor`): Attention mask of shape `(batch, 1, q_len, k_v_seq_len)` where padding elements are indicated by very large negative values. output_attentions (`bool`, *optional*, defaults to `False`): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. """ residual = hidden_states hidden_states = self.attention_norm(hidden_states) hidden_states, attn_weights = self.attention( hidden_states=hidden_states, attention_mask=attention_mask, position_embeddings=position_embeddings, output_attentions=output_attentions, **kwargs, ) hidden_states = residual + hidden_states residual = hidden_states hidden_states = self.ffn_norm(hidden_states) hidden_states = self.feed_forward(hidden_states) hidden_states = residual + hidden_states outputs = (hidden_states,) if output_attentions: outputs += (attn_weights,) return outputs class PixtralTransformer(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layers = torch.nn.ModuleList() for _ in range(config.num_hidden_layers): self.layers.append(PixtralAttentionLayer(config)) self.gradient_checkpointing = False def forward( self, inputs_embeds, attention_mask: Optional[torch.Tensor] = None, position_embeddings: Optional[tuple[torch.Tensor, torch.Tensor]] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Union[tuple, BaseModelOutput]: r""" Args: inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`): Embeddings which serve as input to the Transformer. attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*): Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`: - 1 for tokens that are **not masked**, - 0 for tokens that are **masked**. [What are attention masks?](../glossary#attention-mask) output_attentions (`bool`, *optional*): Whether or not to return the attentions tensors of all attention layers. See `attentions` under returned tensors for more detail. output_hidden_states (`bool`, *optional*): Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for more detail. return_dict (`bool`, *optional*): Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_states = () if output_hidden_states else None all_attentions = () if output_attentions else None hidden_states = inputs_embeds for encoder_layer in self.layers: if output_hidden_states: encoder_states = encoder_states + (hidden_states,) layer_outputs = encoder_layer( hidden_states, attention_mask, position_embeddings=position_embeddings, output_attentions=output_attentions, **kwargs, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: encoder_states = encoder_states + (hidden_states,) if not return_dict: return tuple(v for v in [hidden_states, encoder_states, all_attentions] if v is not None) return BaseModelOutput( last_hidden_state=hidden_states, hidden_states=encoder_states, attentions=all_attentions ) @auto_docstring class PixtralPreTrainedModel(PreTrainedModel): config: PixtralVisionConfig base_model_prefix = "model" main_input_name = "pixel_values" supports_gradient_checkpointing = True _supports_attention_backend = True _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _no_split_modules = ["PixtralAttentionLayer"] _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _supports_attention_backend = True def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, (nn.Linear, nn.Conv2d)): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, PixtralRMSNorm): module.weight.data.fill_(1.0) def generate_block_attention_mask(patch_embeds_list, tensor): dtype = tensor.dtype device = tensor.device seq_len = tensor.shape[1] d_min = torch.finfo(dtype).min causal_mask = torch.full((seq_len, seq_len), fill_value=d_min, dtype=dtype, device=device) block_end_idx = torch.tensor(patch_embeds_list).cumsum(-1) block_start_idx = torch.tensor([0] + patch_embeds_list[:-1]).cumsum(-1) for start, end in zip(block_start_idx, block_end_idx): causal_mask[start:end, start:end] = 0 causal_mask = causal_mask[None, None, :, :].expand(tensor.shape[0], 1, -1, -1) return causal_mask @auto_docstring class PixtralVisionModel(PixtralPreTrainedModel): base_model_prefix = "vision_encoder" def __init__(self, config): super().__init__(config) self.config = config self.patch_conv = nn.Conv2d( in_channels=config.num_channels, out_channels=config.hidden_size, kernel_size=config.patch_size, stride=config.patch_size, bias=False, ) self.patch_size = config.patch_size self.ln_pre = PixtralRMSNorm(config.hidden_size, eps=1e-5) self.transformer = PixtralTransformer(config) self.patch_positional_embedding = PixtralRotaryEmbedding(config) self.post_init() def get_input_embeddings(self): return self.patch_conv @can_return_tuple @auto_docstring def forward( self, pixel_values: torch.Tensor, image_sizes: Optional[torch.Tensor] = None, output_hidden_states: Optional[bool] = None, output_attentions: Optional[bool] = None, return_dict: Optional[bool] = None, *args, **kwargs: Unpack[FlashAttentionKwargs], ) -> Union[tuple, BaseModelOutput]: if image_sizes is None: batch_size, _, height, width = pixel_values.shape image_sizes = [(height, width)] * batch_size # pass images through initial convolution independently patch_embeds = self.patch_conv(pixel_values) patch_embeds_list = [ embed[..., : (size[0] // self.patch_size), : (size[1] // self.patch_size)] for embed, size in zip(patch_embeds, image_sizes) ] # flatten to a single sequence patch_embeds = torch.cat([p.flatten(1).T for p in patch_embeds_list], dim=0).unsqueeze(0) patch_embeds = self.ln_pre(patch_embeds) # positional embeddings position_ids = position_ids_in_meshgrid( patch_embeds_list, max_width=self.config.image_size // self.config.patch_size ) kwargs["position_ids"] = position_ids position_embeddings = self.patch_positional_embedding(patch_embeds, position_ids) if self.config._attn_implementation == "flash_attention_2": # We only rely on position_ids when using flash_attention_2 attention_mask = None else: attention_mask = generate_block_attention_mask( [p.shape[-2] * p.shape[-1] for p in patch_embeds_list], patch_embeds ) return self.transformer( patch_embeds, attention_mask=attention_mask, position_embeddings=position_embeddings, output_hidden_states=output_hidden_states, output_attentions=output_attentions, return_dict=True, **kwargs, ) __all__ = ["PixtralVisionModel", "PixtralPreTrainedModel"]