# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for UDOP. """ from typing import Optional, Union from transformers import logging from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack from ...tokenization_utils_base import PreTokenizedInput, TextInput logger = logging.get_logger(__name__) class UdopTextKwargs(TextKwargs, total=False): word_labels: Optional[Union[list[int], list[list[int]]]] boxes: Union[list[list[int]], list[list[list[int]]]] class UdopProcessorKwargs(ProcessingKwargs, total=False): text_kwargs: UdopTextKwargs _defaults = { "text_kwargs": { "add_special_tokens": True, "padding": False, "truncation": False, "stride": 0, "return_overflowing_tokens": False, "return_special_tokens_mask": False, "return_offsets_mapping": False, "return_length": False, "verbose": True, }, "images_kwargs": {}, } class UdopProcessor(ProcessorMixin): r""" Constructs a UDOP processor which combines a LayoutLMv3 image processor and a UDOP tokenizer into a single processor. [`UdopProcessor`] offers all the functionalities you need to prepare data for the model. It first uses [`LayoutLMv3ImageProcessor`] to resize, rescale and normalize document images, and optionally applies OCR to get words and normalized bounding boxes. These are then provided to [`UdopTokenizer`] or [`UdopTokenizerFast`], which turns the words and bounding boxes into token-level `input_ids`, `attention_mask`, `token_type_ids`, `bbox`. Optionally, one can provide integer `word_labels`, which are turned into token-level `labels` for token classification tasks (such as FUNSD, CORD). Additionally, it also supports passing `text_target` and `text_pair_target` to the tokenizer, which can be used to prepare labels for language modeling tasks. Args: image_processor (`LayoutLMv3ImageProcessor`): An instance of [`LayoutLMv3ImageProcessor`]. The image processor is a required input. tokenizer (`UdopTokenizer` or `UdopTokenizerFast`): An instance of [`UdopTokenizer`] or [`UdopTokenizerFast`]. The tokenizer is a required input. """ attributes = ["image_processor", "tokenizer"] image_processor_class = "LayoutLMv3ImageProcessor" tokenizer_class = ("UdopTokenizer", "UdopTokenizerFast") def __init__(self, image_processor, tokenizer): super().__init__(image_processor, tokenizer) def __call__( self, images: Optional[ImageInput] = None, text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None, audio=None, videos=None, **kwargs: Unpack[UdopProcessorKwargs], ) -> BatchFeature: """ This method first forwards the `images` argument to [`~UdopImageProcessor.__call__`]. In case [`UdopImageProcessor`] was initialized with `apply_ocr` set to `True`, it passes the obtained words and bounding boxes along with the additional arguments to [`~UdopTokenizer.__call__`] and returns the output, together with the prepared `pixel_values`. In case [`UdopImageProcessor`] was initialized with `apply_ocr` set to `False`, it passes the words (`text`/``text_pair`) and `boxes` specified by the user along with the additional arguments to [`~UdopTokenizer.__call__`] and returns the output, together with the prepared `pixel_values`. Alternatively, one can pass `text_target` and `text_pair_target` to prepare the targets of UDOP. Please refer to the docstring of the above two methods for more information. """ # verify input output_kwargs = self._merge_kwargs( UdopProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) boxes = output_kwargs["text_kwargs"].pop("boxes", None) word_labels = output_kwargs["text_kwargs"].pop("word_labels", None) text_pair = output_kwargs["text_kwargs"].pop("text_pair", None) return_overflowing_tokens = output_kwargs["text_kwargs"].get("return_overflowing_tokens", False) return_offsets_mapping = output_kwargs["text_kwargs"].get("return_offsets_mapping", False) text_target = output_kwargs["text_kwargs"].get("text_target", None) if self.image_processor.apply_ocr and (boxes is not None): raise ValueError( "You cannot provide bounding boxes if you initialized the image processor with apply_ocr set to True." ) if self.image_processor.apply_ocr and (word_labels is not None): raise ValueError( "You cannot provide word labels if you initialized the image processor with apply_ocr set to True." ) if return_overflowing_tokens and not return_offsets_mapping: raise ValueError("You cannot return overflowing tokens without returning the offsets mapping.") if text_target is not None: # use the processor to prepare the targets of UDOP return self.tokenizer( **output_kwargs["text_kwargs"], ) else: # use the processor to prepare the inputs of UDOP # first, apply the image processor features = self.image_processor(images=images, **output_kwargs["images_kwargs"]) features_words = features.pop("words", None) features_boxes = features.pop("boxes", None) output_kwargs["text_kwargs"].pop("text_target", None) output_kwargs["text_kwargs"].pop("text_pair_target", None) output_kwargs["text_kwargs"]["text_pair"] = text_pair output_kwargs["text_kwargs"]["boxes"] = boxes if boxes is not None else features_boxes output_kwargs["text_kwargs"]["word_labels"] = word_labels # second, apply the tokenizer if text is not None and self.image_processor.apply_ocr and text_pair is None: if isinstance(text, str): text = [text] # add batch dimension (as the image processor always adds a batch dimension) output_kwargs["text_kwargs"]["text_pair"] = features_words encoded_inputs = self.tokenizer( text=text if text is not None else features_words, **output_kwargs["text_kwargs"], ) # add pixel values if return_overflowing_tokens is True: features["pixel_values"] = self.get_overflowing_images( features["pixel_values"], encoded_inputs["overflow_to_sample_mapping"] ) features.update(encoded_inputs) return features # Copied from transformers.models.layoutlmv3.processing_layoutlmv3.LayoutLMv3Processor.get_overflowing_images def get_overflowing_images(self, images, overflow_to_sample_mapping): # in case there's an overflow, ensure each `input_ids` sample is mapped to its corresponding image images_with_overflow = [] for sample_idx in overflow_to_sample_mapping: images_with_overflow.append(images[sample_idx]) if len(images_with_overflow) != len(overflow_to_sample_mapping): raise ValueError( "Expected length of images to be the same as the length of `overflow_to_sample_mapping`, but got" f" {len(images_with_overflow)} and {len(overflow_to_sample_mapping)}" ) return images_with_overflow # Copied from transformers.models.layoutlmv3.processing_layoutlmv3.LayoutLMv3Processor.batch_decode def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.layoutlmv3.processing_layoutlmv3.LayoutLMv3Processor.decode def decode(self, *args, **kwargs): """ This method forwards all its arguments to PreTrainedTokenizer's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): return ["pixel_values", "input_ids", "bbox", "attention_mask"] __all__ = ["UdopProcessor"]