# Copyright 2024 The HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import importlib import re import types from typing import TYPE_CHECKING, Optional, Union from packaging import version from .base import HfQuantizer from .quantizers_utils import get_module_from_name if TYPE_CHECKING: from ..modeling_utils import PreTrainedModel from typing import Any from ..utils import is_torch_available, is_torchao_available, logging from ..utils.quantization_config import TorchAoConfig if is_torch_available(): import torch import torch.nn as nn logger = logging.get_logger(__name__) def fuzzy_match_size(config_name: str) -> Optional[str]: """ Extract the size digit from strings like "4weight", "8weight". Returns the digit as an integer if found, otherwise None. """ config_name = config_name.lower() str_match = re.search(r"(\d)weight", config_name) if str_match: return str_match.group(1) return None # Finds the parent of a node module named "name" def find_parent(model, name): module_tree = name.split(".")[:-1] parent = model for m in module_tree: parent = parent._modules[m] return parent def _quantization_type(weight): from torchao.dtypes import AffineQuantizedTensor from torchao.quantization.linear_activation_quantized_tensor import LinearActivationQuantizedTensor if isinstance(weight, AffineQuantizedTensor): return f"{weight.__class__.__name__}({weight._quantization_type()})" if isinstance(weight, LinearActivationQuantizedTensor): return f"{weight.__class__.__name__}(activation={weight.input_quant_func}, weight={_quantization_type(weight.original_weight_tensor)})" def _linear_extra_repr(self): weight = _quantization_type(self.weight) if weight is None: return f"in_features={self.weight.shape[1]}, out_features={self.weight.shape[0]}, weight=None" else: return f"in_features={self.weight.shape[1]}, out_features={self.weight.shape[0]}, weight={weight}" class TorchAoHfQuantizer(HfQuantizer): """ Quantizer for torchao: https://github.com/pytorch/ao/ """ requires_parameters_quantization = True requires_calibration = False required_packages = ["torchao"] def __init__(self, quantization_config, **kwargs): super().__init__(quantization_config, **kwargs) def validate_environment(self, *args, **kwargs): if not is_torchao_available(): raise ImportError("Loading an torchao quantized model requires torchao library (`pip install torchao`)") self.offload = False device_map = kwargs.get("device_map", None) if isinstance(device_map, dict): if "cpu" in device_map.values() or "disk" in device_map.values(): if self.pre_quantized: raise ValueError( "You are attempting to perform cpu/disk offload with a pre-quantized torchao model " "This is not supported yet . Please remove the CPU or disk device from the device_map." ) else: self.offload = True if self.pre_quantized: weights_only = kwargs.get("weights_only", None) if weights_only: torch_version = version.parse(importlib.metadata.version("torch")) if torch_version < version.parse("2.5.0"): raise RuntimeError( f"In order to use torchao pre-quantized model, you need to have torch>=2.5.0. However, the current version is {torch_version}." f" You can also set with `weights_only=False` in `from_pretrained` if you don't want to update torch" ) def update_torch_dtype(self, torch_dtype): if self.quantization_config.quant_type == "int4_weight_only": if torch_dtype is not None and torch_dtype != torch.bfloat16: logger.warning_once( f"Setting torch_dtype to {torch_dtype} for int4_weight_only quantization, but only bfloat16 is supported right now. Please set the torch_dtype to bfloat16." ) if torch_dtype is None: logger.warning_once( "Setting torch_dtype to torch.bfloat16 for int4_weight_only quantization since only bfloat16 is supported right now. Please set torch_dtype=torch.bfloat16 to remove this warning." ) torch_dtype = torch.bfloat16 if self.quantization_config.quant_type == "int8_dynamic_activation_int8_weight": if torch_dtype is None: logger.info( "Setting torch_dtype to torch.float32 for int8_dynamic_activation_int8_weight quantization as no torch_dtype was specified in from_pretrained" ) # we need to set the torch_dtype, otherwise we have dtype mismatch when performing the quantized linear op torch_dtype = torch.float32 return torch_dtype def adjust_target_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype": if version.parse(importlib.metadata.version("accelerate")) > version.parse("0.19.0"): from accelerate.utils import CustomDtype # Import AOBaseConfig directly since we know we have the right version if self.quantization_config._get_ao_version() > version.Version("0.9.0"): from torchao.core.config import AOBaseConfig quant_type = self.quantization_config.quant_type if isinstance(quant_type, AOBaseConfig): # Extract size digit using fuzzy match on the class name config_name = quant_type.__class__.__name__ size_digit = fuzzy_match_size(config_name) # Map the extracted digit to appropriate dtype if size_digit == "4": return CustomDtype.INT4 else: # Default to int8 return torch.int8 # Original mapping for non-AOBaseConfig types map_to_target_dtype = { "int4_weight_only": CustomDtype.INT4, "int8_weight_only": torch.int8, "int8_dynamic_activation_int8_weight": torch.int8, "autoquant": None, } return map_to_target_dtype[self.quantization_config.quant_type] else: raise ValueError( "You are using `device_map='auto'` on a torchao quantized model. To automatically compute" " the appropriate device map, you should upgrade your `accelerate` library with " "`pip install --upgrade accelerate`" ) def adjust_max_memory(self, max_memory: dict[str, Union[int, str]]) -> dict[str, Union[int, str]]: # need more space for the quantization parameters (e.g. scale). Tested with int4 wo and group size = 128 max_memory = {key: val * 0.9 for key, val in max_memory.items()} return max_memory def _process_model_before_weight_loading( self, model: "PreTrainedModel", keep_in_fp32_modules: Optional[list[str]] = None, **kwargs ): self.modules_to_not_convert = self.get_modules_to_not_convert( model, self.quantization_config.modules_to_not_convert, keep_in_fp32_modules ) if self.quantization_config.include_input_output_embeddings: input_emb = model.get_input_embeddings() input_emb_names = [name for name, module in model.named_modules() if id(module) == id(input_emb)] output_emb = model.get_output_embeddings() output_emb_names = [name for name, module in model.named_modules() if id(module) == id(output_emb)] self.modules_to_not_convert = [ x for x in self.modules_to_not_convert if x not in input_emb_names + output_emb_names ] return def check_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, state_dict: dict[str, Any], **kwargs, ) -> bool: if self.quantization_config.quant_type == "autoquant": return False param_device = kwargs.pop("param_device", None) # check if the param_name is not in self.modules_to_not_convert if any((key + "." in param_name) or (key == param_name) for key in self.modules_to_not_convert): return False elif param_device == "cpu" and self.offload: # We don't quantize weights that we offload return False else: # we only quantize the weight of nn.Linear and nn.Embedding module, tensor_name = get_module_from_name(model, param_name) _QUANTIZABLE = [torch.nn.Linear] if self.quantization_config.include_input_output_embeddings: _QUANTIZABLE.append(torch.nn.Embedding) return isinstance(module, tuple(_QUANTIZABLE)) and (tensor_name == "weight") def create_quantized_param( self, model: "PreTrainedModel", param_value: "torch.Tensor", param_name: str, target_device: "torch.device", state_dict: dict[str, Any], unexpected_keys: list[str], ): """ Each nn.Linear layer that needs to be quantized is processed here. First, we set the value the weight tensor, then we move it to the target device. Finally, we quantize the module. """ if self.quantization_config.quant_type == "autoquant": return from torchao.quantization import quantize_ module, tensor_name = get_module_from_name(model, param_name) if self.pre_quantized: module._parameters[tensor_name] = torch.nn.Parameter( param_value.to(device=target_device), requires_grad=param_value.requires_grad ) if isinstance(module, nn.Linear): module.extra_repr = types.MethodType(_linear_extra_repr, module) else: assert isinstance(self.quantization_config, TorchAoConfig) module._parameters[tensor_name] = torch.nn.Parameter( param_value, requires_grad=param_value.requires_grad ).to(device=target_device) # if we are quantizing tied parameters, to avoid tying the quantized weights # the correct order to do it is # 1. load the weight to model # 2. run tie_weights to populate the weights # 3. quantize input_embed = model.get_input_embeddings() if self.quantization_config.untie_embedding_weights and id(module) == id(input_embed): model.tie_weights() setattr(model.config.get_text_config(decoder=True), "tie_word_embeddings", False) # handle ModuleFqnToConfig, introduced in torchao 0.12.0+ if self.quantization_config._get_ao_version() >= version.Version("0.12.0"): from torchao.quantization import ModuleFqnToConfig config = self.quantization_config.get_apply_tensor_subclass() if isinstance(config, ModuleFqnToConfig): module_fqn, _ = param_name.rsplit(".", 1) c = None if module_fqn in config.module_fqn_to_config: c = config.module_fqn_to_config[module_fqn] else: c = config.module_fqn_to_config.get("_default", None) if c is not None: # filter_fn: not filtering out any modules quantize_(module, c, filter_fn=lambda x, fqn: True) return quantize_(module, self.quantization_config.get_apply_tensor_subclass()) def _process_model_after_weight_loading(self, model, **kwargs): """No process required for torchao quantized model""" if self.quantization_config.quant_type == "autoquant": from torchao import autoquant from torchao.quantization import ALL_AUTOQUANT_CLASS_LIST model = torch.compile(model, mode="max-autotune") model = autoquant( model, qtensor_class_list=ALL_AUTOQUANT_CLASS_LIST, set_inductor_config=False, **self.quantization_config.quant_type_kwargs, ) return model return def is_serializable(self, safe_serialization=None) -> bool: if safe_serialization: logger.warning( "torchao quantized model does not support safe serialization, please set `safe_serialization` to False" ) return False _is_torchao_serializable = version.parse(importlib.metadata.version("huggingface_hub")) >= version.parse( "0.25.0" ) if not _is_torchao_serializable: logger.warning("torchao quantized model is only serializable after huggingface_hub >= 0.25.0 ") if self.offload and self.quantization_config.modules_to_not_convert is None: logger.warning( "The model contains offloaded modules and these modules are not quantized. We don't recommend saving the model as we won't be able to reload them." "If you want to specify modules to not quantize, please specify modules_to_not_convert in the quantization_config." ) return False return _is_torchao_serializable def get_cuda_warm_up_factor(self): """ This factor is used in caching_allocator_warmup to determine how many bytes to pre-allocate for CUDA warmup. - A factor of 2 means we pre-allocate the full memory footprint of the model. - A factor of 4 means we pre-allocate half of that, and so on However, when using TorchAO, calculating memory usage with param.numel() * param.element_size() doesn't give the correct size for quantized weights (like int4 or int8) That's because TorchAO internally represents quantized tensors using subtensors and metadata, and the reported element_size() still corresponds to the torch_dtype not the actual bit-width of the quantized data. To correct for this: - Use a division factor of 8 for int4 weights - Use a division factor of 4 for int8 weights """ if self.quantization_config._get_ao_version() > version.Version("0.9.0"): from torchao.core.config import AOBaseConfig quant_type = self.quantization_config.quant_type # For autoquant case, it will be treated in the string implementation below in map_to_target_dtype if isinstance(quant_type, AOBaseConfig): # Extract size digit using fuzzy match on the class name config_name = quant_type.__class__.__name__ size_digit = fuzzy_match_size(config_name) if size_digit == "4": return 8 else: return 4 # Original mapping for non-AOBaseConfig types map_to_target_dtype = { "int4_weight_only": 8, "int8_weight_only": 4, "int8_dynamic_activation_int8_weight": 4, "autoquant": 4, } return map_to_target_dtype[self.quantization_config.quant_type] @property def is_trainable(self) -> bool: supported_quant_types_for_training = [ "int8_weight_only", "int8_dynamic_activation_int8_weight", ] return self.quantization_config.quant_type in supported_quant_types_for_training @property def is_compileable(self) -> bool: return True