# coding=utf-8 # Copyright 2025 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import json import os import warnings from copy import deepcopy from typing import Any, Optional, Union import numpy as np from .dynamic_module_utils import custom_object_save from .image_processing_utils import ( BatchFeature, get_size_dict, ) from .image_processing_utils_fast import BaseImageProcessorFast from .image_utils import ( ChannelDimension, SizeDict, validate_kwargs, ) from .processing_utils import Unpack, VideosKwargs from .utils import ( VIDEO_PROCESSOR_NAME, TensorType, add_start_docstrings, cached_file, copy_func, download_url, is_offline_mode, is_remote_url, is_torch_available, is_torchvision_available, is_torchvision_v2_available, is_vision_available, logging, ) from .utils.import_utils import requires from .video_utils import ( VideoInput, VideoMetadata, group_videos_by_shape, load_video, make_batched_videos, reorder_videos, to_channel_dimension_format, ) if is_vision_available(): from .image_utils import PILImageResampling if is_torch_available(): import torch if is_torchvision_available(): from .image_utils import pil_torch_interpolation_mapping if is_torchvision_v2_available(): from torchvision.transforms.v2 import functional as F else: from torchvision.transforms import functional as F logger = logging.get_logger(__name__) BASE_VIDEO_PROCESSOR_DOCSTRING = r""" Args: do_resize (`bool`, *optional*, defaults to `self.do_resize`): Whether to resize the video's (height, width) dimensions to the specified `size`. Can be overridden by the `do_resize` parameter in the `preprocess` method. size (`dict`, *optional*, defaults to `self.size`): Size of the output video after resizing. Can be overridden by the `size` parameter in the `preprocess` method. size_divisor (`int`, *optional*, defaults to `self.size_divisor`): The size by which to make sure both the height and width can be divided. default_to_square (`bool`, *optional*, defaults to `self.default_to_square`): Whether to default to a square video when resizing, if size is an int. resample (`PILImageResampling`, *optional*, defaults to `self.resample`): Resampling filter to use if resizing the video. Only has an effect if `do_resize` is set to `True`. Can be overridden by the `resample` parameter in the `preprocess` method. do_center_crop (`bool`, *optional*, defaults to `self.do_center_crop`): Whether to center crop the video to the specified `crop_size`. Can be overridden by `do_center_crop` in the `preprocess` method. do_pad (`bool`, *optional*): Whether to pad the video to the `(max_height, max_width)` of the videos in the batch. crop_size (`dict[str, int]` *optional*, defaults to `self.crop_size`): Size of the output video after applying `center_crop`. Can be overridden by `crop_size` in the `preprocess` method. do_rescale (`bool`, *optional*, defaults to `self.do_rescale`): Whether to rescale the video by the specified scale `rescale_factor`. Can be overridden by the `do_rescale` parameter in the `preprocess` method. rescale_factor (`int` or `float`, *optional*, defaults to `self.rescale_factor`): Scale factor to use if rescaling the video. Only has an effect if `do_rescale` is set to `True`. Can be overridden by the `rescale_factor` parameter in the `preprocess` method. do_normalize (`bool`, *optional*, defaults to `self.do_normalize`): Whether to normalize the video. Can be overridden by the `do_normalize` parameter in the `preprocess` method. Can be overridden by the `do_normalize` parameter in the `preprocess` method. image_mean (`float` or `list[float]`, *optional*, defaults to `self.image_mean`): Mean to use if normalizing the video. This is a float or list of floats the length of the number of channels in the video. Can be overridden by the `image_mean` parameter in the `preprocess` method. Can be overridden by the `image_mean` parameter in the `preprocess` method. image_std (`float` or `list[float]`, *optional*, defaults to `self.image_std`): Standard deviation to use if normalizing the video. This is a float or list of floats the length of the number of channels in the video. Can be overridden by the `image_std` parameter in the `preprocess` method. Can be overridden by the `image_std` parameter in the `preprocess` method. do_convert_rgb (`bool`, *optional*, defaults to `self.image_std`): Whether to convert the video to RGB. video_metadata (`VideoMetadata`, *optional*): Metadata of the video containing information about total duration, fps and total number of frames. do_sample_frames (`int`, *optional*, defaults to `self.do_sample_frames`): Whether to sample frames from the video before processing or to process the whole video. num_frames (`int`, *optional*, defaults to `self.num_frames`): Maximum number of frames to sample when `do_sample_frames=True`. fps (`int` or `float`, *optional*, defaults to `self.fps`): Target frames to sample per second when `do_sample_frames=True`. return_tensors (`str` or `TensorType`, *optional*): Returns stacked tensors if set to `pt, otherwise returns a list of tensors. data_format (`ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST`): The channel dimension format for the output video. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: video in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: video in (height, width, num_channels) format. - Unset: Use the channel dimension format of the input video. input_data_format (`ChannelDimension` or `str`, *optional*): The channel dimension format for the input video. If unset, the channel dimension format is inferred from the input video. Can be one of: - `"channels_first"` or `ChannelDimension.FIRST`: video in (num_channels, height, width) format. - `"channels_last"` or `ChannelDimension.LAST`: video in (height, width, num_channels) format. - `"none"` or `ChannelDimension.NONE`: video in (height, width) format. device (`torch.device`, *optional*): The device to process the videos on. If unset, the device is inferred from the input videos.""" @add_start_docstrings( "Constructs a base VideoProcessor.", BASE_VIDEO_PROCESSOR_DOCSTRING, ) @requires(backends=("vision", "torchvision")) class BaseVideoProcessor(BaseImageProcessorFast): _auto_class = None resample = None image_mean = None image_std = None size = None size_divisor = None default_to_square = True crop_size = None do_resize = None do_center_crop = None do_pad = None do_rescale = None rescale_factor = 1 / 255 do_normalize = None do_convert_rgb = None do_sample_frames = None fps = None num_frames = None video_metadata = None valid_kwargs = VideosKwargs model_input_names = ["pixel_values_videos"] def __init__(self, **kwargs: Unpack[VideosKwargs]) -> None: super().__init__() self._processor_class = kwargs.pop("processor_class", None) # Additional attributes without default values for key, value in kwargs.items(): try: setattr(self, key, value) except AttributeError as err: logger.error(f"Can't set {key} with value {value} for {self}") raise err # Prepare size related keys and turn then into `SizeDict` size = kwargs.pop("size", self.size) self.size = ( get_size_dict(size=size, default_to_square=kwargs.pop("default_to_square", self.default_to_square)) if size is not None else None ) crop_size = kwargs.pop("crop_size", self.crop_size) self.crop_size = get_size_dict(crop_size, param_name="crop_size") if crop_size is not None else None # Save valid kwargs in a list for further processing self.model_valid_processing_keys = list(self.valid_kwargs.__annotations__.keys()) for key in self.model_valid_processing_keys: if kwargs.get(key) is not None: setattr(self, key, kwargs[key]) else: setattr(self, key, deepcopy(getattr(self, key, None))) def __call__(self, videos, **kwargs) -> BatchFeature: return self.preprocess(videos, **kwargs) def convert_to_rgb( self, video: "torch.Tensor", ) -> VideoInput: """ Converts a video to RGB format. Args: video (`"torch.Tensor"`): The video to convert. Returns: `torch.Tensor`: The converted video. """ video = F.grayscale_to_rgb(video) if video.shape[-3] == 3 or not (video[..., 3, :, :] < 255).any(): return video # There is a transparency layer, blend it with a white background. # Calculate the alpha proportion for blending. alpha = video[..., 3, :, :] / 255.0 video = (1 - alpha[..., None, :, :]) * 255 + alpha[..., None, :, :] * video[..., :3, :, :] return video def sample_frames( self, video: "torch.Tensor", metadata: Optional[Union[VideoMetadata, dict]] = None, num_frames: Optional[int] = None, fps: Optional[Union[int, float]] = None, ): """ Default sampling function which uniformly samples the desired number of frames between 0 and total number of frames. If `fps` is passed along with metadata, `fps` frames per second are sampled uniformty. Arguments `num_frames` and `fps` are mutually exclusive. Args: video (`torch.Tensor`): Video that need to be sampled. metadata (`VideoMetadata`, *optional*): Metadata of the video containing information about total duration, fps and total number of frames. num_frames (`int`, *optional*): Maximum number of frames to sample. Defaults to `self.num_frames`. fps (`int` or `float`, *optional*): Target frames to sample per second. Defaults to `self.fps`. Returns: torch.Tensor: Sampled video frames. """ if fps is not None and num_frames is not None: raise ValueError( "`num_frames`, `fps`, and `sample_indices_fn` are mutually exclusive arguments, please use only one!" ) num_frames = num_frames if num_frames is not None else self.num_frames fps = fps if fps is not None else self.fps total_num_frames = video.shape[0] # If num_frames is not given but fps is, calculate num_frames from fps if num_frames is None and fps is not None: if metadata is None: raise ValueError( "Asked to sample `fps` frames per second but no video metadata was provided which is required when sampling with `fps`. " "Please pass in `VideoMetadata` object or use a fixed `num_frames` per input video" ) num_frames = int(total_num_frames / metadata["fps"] * fps) if num_frames > total_num_frames: raise ValueError( f"Video can't be sampled. The `num_frames={num_frames}` exceeds `total_num_frames={total_num_frames}`. " ) if num_frames is not None: indices = torch.arange(0, total_num_frames, total_num_frames / num_frames).int() else: indices = torch.arange(0, total_num_frames).int() video = video[indices].contiguous() return video def _prepare_input_videos( self, videos: VideoInput, video_metadata: VideoMetadata = None, input_data_format: Optional[Union[str, ChannelDimension]] = None, ) -> list["torch.Tensor"]: """ Prepare the input videos for processing. """ videos = make_batched_videos(videos) if video_metadata is not None: batch_metadata = [metadata for batch_list in video_metadata for metadata in batch_list] else: batch_metadata = [None] * len(videos) processed_videos = [] for video in videos: # `make_batched_videos` always returns a 4D array per video if isinstance(video, np.ndarray): video = to_channel_dimension_format(video, ChannelDimension.FIRST, input_data_format) # not using F.to_tensor as it doesn't handle (C, H, W) numpy arrays video = torch.from_numpy(video).contiguous() processed_videos.append(video) return processed_videos, batch_metadata @add_start_docstrings(BASE_VIDEO_PROCESSOR_DOCSTRING) def preprocess( self, videos: VideoInput, **kwargs: Unpack[VideosKwargs], ) -> BatchFeature: validate_kwargs( captured_kwargs=kwargs.keys(), valid_processor_keys=list(self.valid_kwargs.__annotations__.keys()) + ["return_tensors"], ) # Set default kwargs from self. This ensures that if a kwarg is not provided # by the user, it gets its default value from the instance, or is set to None. for kwarg_name in self.valid_kwargs.__annotations__: kwargs.setdefault(kwarg_name, getattr(self, kwarg_name, None)) input_data_format = kwargs.pop("input_data_format") video_metadata = kwargs.pop("video_metadata") videos, video_metadata = self._prepare_input_videos( videos=videos, video_metadata=video_metadata, input_data_format=input_data_format ) kwargs = self._further_process_kwargs(**kwargs) self._validate_preprocess_kwargs(**kwargs) # torch resize uses interpolation instead of resample resample = kwargs.pop("resample") kwargs["interpolation"] = ( pil_torch_interpolation_mapping[resample] if isinstance(resample, (PILImageResampling, int)) else resample ) # Pop kwargs that are not needed in _preprocess kwargs.pop("default_to_square") kwargs.pop("data_format") return self._preprocess(videos=videos, video_metadata=video_metadata, **kwargs) def _preprocess( self, videos: list["torch.Tensor"], video_metadata: Union[list[VideoMetadata], list[dict]], do_convert_rgb: bool, do_resize: bool, size: SizeDict, size_divisor: Optional[int], interpolation: Optional["F.InterpolationMode"], do_center_crop: bool, crop_size: SizeDict, do_rescale: bool, do_pad: bool, rescale_factor: float, do_normalize: bool, image_mean: Optional[Union[float, list[float]]], image_std: Optional[Union[float, list[float]]], do_sample_frames: Optional[bool] = None, fps: Optional[Union[int, float]] = None, num_frames: Optional[int] = None, return_tensors: Optional[Union[str, TensorType]] = None, device: Optional["torch.Tensor"] = None, ) -> BatchFeature: if do_sample_frames: # Sample video frames videos = [ self.sample_frames(video, metadata=metadata, num_frames=num_frames, fps=fps) for video, metadata in zip(videos, video_metadata) ] # We need to sample frames first before moving to device, if `do_sample_frames=True`. Otherwise # moving the whole video incurs high GPU mem usage for long videos if device is not None: videos = [video.to(device) for video in videos] # Group videos by size for batched resizing grouped_videos, grouped_videos_index = group_videos_by_shape(videos) resized_videos_grouped = {} for shape, stacked_videos in grouped_videos.items(): if do_convert_rgb: stacked_videos = self.convert_to_rgb(stacked_videos) if do_resize: stacked_videos = self.resize( stacked_videos, size=size, size_divisor=size_divisor, interpolation=interpolation ) resized_videos_grouped[shape] = stacked_videos resized_videos = reorder_videos(resized_videos_grouped, grouped_videos_index) # Group videos by size for further processing # Needed in case do_resize is False, or resize returns videos with different sizes grouped_videos, grouped_videos_index = group_videos_by_shape(resized_videos) processed_videos_grouped = {} for shape, stacked_videos in grouped_videos.items(): if do_center_crop: stacked_videos = self.center_crop(stacked_videos, crop_size) # Fused rescale and normalize stacked_videos = self.rescale_and_normalize( stacked_videos, do_rescale, rescale_factor, do_normalize, image_mean, image_std ) processed_videos_grouped[shape] = stacked_videos processed_videos = reorder_videos(processed_videos_grouped, grouped_videos_index) processed_videos = torch.stack(processed_videos, dim=0) if return_tensors else processed_videos return BatchFeature(data={"pixel_values_videos": processed_videos}, tensor_type=return_tensors) @classmethod def from_pretrained( cls, pretrained_model_name_or_path: Union[str, os.PathLike], cache_dir: Optional[Union[str, os.PathLike]] = None, force_download: bool = False, local_files_only: bool = False, token: Optional[Union[str, bool]] = None, revision: str = "main", **kwargs, ): r""" Instantiate a type of [`~video_processing_utils.VideoProcessorBase`] from an video processor. Args: pretrained_model_name_or_path (`str` or `os.PathLike`): This can be either: - a string, the *model id* of a pretrained video hosted inside a model repo on huggingface.co. - a path to a *directory* containing a video processor file saved using the [`~video_processing_utils.VideoProcessorBase.save_pretrained`] method, e.g., `./my_model_directory/`. - a path or url to a saved video processor JSON *file*, e.g., `./my_model_directory/preprocessor_config.json`. cache_dir (`str` or `os.PathLike`, *optional*): Path to a directory in which a downloaded pretrained model video processor should be cached if the standard cache should not be used. force_download (`bool`, *optional*, defaults to `False`): Whether or not to force to (re-)download the video processor files and override the cached versions if they exist. resume_download: Deprecated and ignored. All downloads are now resumed by default when possible. Will be removed in v5 of Transformers. proxies (`dict[str, str]`, *optional*): A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}.` The proxies are used on each request. token (`str` or `bool`, *optional*): The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use the token generated when running `hf auth login` (stored in `~/.huggingface`). revision (`str`, *optional*, defaults to `"main"`): The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any identifier allowed by git. To test a pull request you made on the Hub, you can pass `revision="refs/pr/"`. return_unused_kwargs (`bool`, *optional*, defaults to `False`): If `False`, then this function returns just the final video processor object. If `True`, then this functions returns a `Tuple(video_processor, unused_kwargs)` where *unused_kwargs* is a dictionary consisting of the key/value pairs whose keys are not video processor attributes: i.e., the part of `kwargs` which has not been used to update `video_processor` and is otherwise ignored. subfolder (`str`, *optional*, defaults to `""`): In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can specify the folder name here. kwargs (`dict[str, Any]`, *optional*): The values in kwargs of any keys which are video processor attributes will be used to override the loaded values. Behavior concerning key/value pairs whose keys are *not* video processor attributes is controlled by the `return_unused_kwargs` keyword parameter. Returns: A video processor of type [`~video_processing_utils.ImagVideoProcessorBase`]. Examples: ```python # We can't instantiate directly the base class *VideoProcessorBase* so let's show the examples on a # derived class: *LlavaOnevisionVideoProcessor* video_processor = LlavaOnevisionVideoProcessor.from_pretrained( "llava-hf/llava-onevision-qwen2-0.5b-ov-hf" ) # Download video_processing_config from huggingface.co and cache. video_processor = LlavaOnevisionVideoProcessor.from_pretrained( "./test/saved_model/" ) # E.g. video processor (or model) was saved using *save_pretrained('./test/saved_model/')* video_processor = LlavaOnevisionVideoProcessor.from_pretrained("./test/saved_model/preprocessor_config.json") video_processor = LlavaOnevisionVideoProcessor.from_pretrained( "llava-hf/llava-onevision-qwen2-0.5b-ov-hf", do_normalize=False, foo=False ) assert video_processor.do_normalize is False video_processor, unused_kwargs = LlavaOnevisionVideoProcessor.from_pretrained( "llava-hf/llava-onevision-qwen2-0.5b-ov-hf", do_normalize=False, foo=False, return_unused_kwargs=True ) assert video_processor.do_normalize is False assert unused_kwargs == {"foo": False} ```""" kwargs["cache_dir"] = cache_dir kwargs["force_download"] = force_download kwargs["local_files_only"] = local_files_only kwargs["revision"] = revision use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token if token is not None: kwargs["token"] = token video_processor_dict, kwargs = cls.get_video_processor_dict(pretrained_model_name_or_path, **kwargs) return cls.from_dict(video_processor_dict, **kwargs) def save_pretrained(self, save_directory: Union[str, os.PathLike], push_to_hub: bool = False, **kwargs): """ Save an video processor object to the directory `save_directory`, so that it can be re-loaded using the [`~video_processing_utils.VideoProcessorBase.from_pretrained`] class method. Args: save_directory (`str` or `os.PathLike`): Directory where the video processor JSON file will be saved (will be created if it does not exist). push_to_hub (`bool`, *optional*, defaults to `False`): Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to with `repo_id` (will default to the name of `save_directory` in your namespace). kwargs (`dict[str, Any]`, *optional*): Additional key word arguments passed along to the [`~utils.PushToHubMixin.push_to_hub`] method. """ use_auth_token = kwargs.pop("use_auth_token", None) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if kwargs.get("token", None) is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) kwargs["token"] = use_auth_token if os.path.isfile(save_directory): raise AssertionError(f"Provided path ({save_directory}) should be a directory, not a file") os.makedirs(save_directory, exist_ok=True) if push_to_hub: commit_message = kwargs.pop("commit_message", None) repo_id = kwargs.pop("repo_id", save_directory.split(os.path.sep)[-1]) repo_id = self._create_repo(repo_id, **kwargs) files_timestamps = self._get_files_timestamps(save_directory) # If we have a custom config, we copy the file defining it in the folder and set the attributes so it can be # loaded from the Hub. if self._auto_class is not None: custom_object_save(self, save_directory, config=self) # If we save using the predefined names, we can load using `from_pretrained` output_video_processor_file = os.path.join(save_directory, VIDEO_PROCESSOR_NAME) self.to_json_file(output_video_processor_file) logger.info(f"Video processor saved in {output_video_processor_file}") if push_to_hub: self._upload_modified_files( save_directory, repo_id, files_timestamps, commit_message=commit_message, token=kwargs.get("token"), ) return [output_video_processor_file] @classmethod def get_video_processor_dict( cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs ) -> tuple[dict[str, Any], dict[str, Any]]: """ From a `pretrained_model_name_or_path`, resolve to a dictionary of parameters, to be used for instantiating a video processor of type [`~video_processing_utils.VideoProcessorBase`] using `from_dict`. Parameters: pretrained_model_name_or_path (`str` or `os.PathLike`): The identifier of the pre-trained checkpoint from which we want the dictionary of parameters. subfolder (`str`, *optional*, defaults to `""`): In case the relevant files are located inside a subfolder of the model repo on huggingface.co, you can specify the folder name here. Returns: `tuple[Dict, Dict]`: The dictionary(ies) that will be used to instantiate the video processor object. """ cache_dir = kwargs.pop("cache_dir", None) force_download = kwargs.pop("force_download", False) resume_download = kwargs.pop("resume_download", None) proxies = kwargs.pop("proxies", None) token = kwargs.pop("token", None) use_auth_token = kwargs.pop("use_auth_token", None) local_files_only = kwargs.pop("local_files_only", False) revision = kwargs.pop("revision", None) subfolder = kwargs.pop("subfolder", "") from_pipeline = kwargs.pop("_from_pipeline", None) from_auto_class = kwargs.pop("_from_auto", False) if use_auth_token is not None: warnings.warn( "The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.", FutureWarning, ) if token is not None: raise ValueError( "`token` and `use_auth_token` are both specified. Please set only the argument `token`." ) token = use_auth_token user_agent = {"file_type": "video processor", "from_auto_class": from_auto_class} if from_pipeline is not None: user_agent["using_pipeline"] = from_pipeline if is_offline_mode() and not local_files_only: logger.info("Offline mode: forcing local_files_only=True") local_files_only = True pretrained_model_name_or_path = str(pretrained_model_name_or_path) is_local = os.path.isdir(pretrained_model_name_or_path) if os.path.isfile(pretrained_model_name_or_path): resolved_video_processor_file = pretrained_model_name_or_path is_local = True elif is_remote_url(pretrained_model_name_or_path): video_processor_file = pretrained_model_name_or_path resolved_video_processor_file = download_url(pretrained_model_name_or_path) else: try: # Try to load with a new config name first and if not successfull try with # the old file name. In case we can load with old name only, raise a deprecation warning # Deprecated until v5.0 video_processor_file = VIDEO_PROCESSOR_NAME resolved_video_processor_file = cached_file( pretrained_model_name_or_path, video_processor_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, ) except OSError: video_processor_file = "preprocessor_config.json" resolved_video_processor_file = cached_file( pretrained_model_name_or_path, video_processor_file, cache_dir=cache_dir, force_download=force_download, proxies=proxies, resume_download=resume_download, local_files_only=local_files_only, token=token, user_agent=user_agent, revision=revision, subfolder=subfolder, ) logger.warning_once( "You have video processor config saved in `preprocessor.json` file which is deprecated. " "Video processor configs should be saved in their own `video_preprocessor.json` file. You can rename " "the file or load and save the processor back which renames it automatically. " "Loading from `preprocessor.json` will be removed in v5.0." ) except OSError: # Raise any environment error raise by `cached_file`. It will have a helpful error message adapted to # the original exception. raise except Exception: # For any other exception, we throw a generic error. raise OSError( f"Can't load video processor for '{pretrained_model_name_or_path}'. If you were trying to load" " it from 'https://huggingface.co/models', make sure you don't have a local directory with the" f" same name. Otherwise, make sure '{pretrained_model_name_or_path}' is the correct path to a" f" directory containing a {VIDEO_PROCESSOR_NAME} file" ) try: # Load video_processor dict with open(resolved_video_processor_file, "r", encoding="utf-8") as reader: text = reader.read() video_processor_dict = json.loads(text) except json.JSONDecodeError: raise OSError( f"It looks like the config file at '{resolved_video_processor_file}' is not a valid JSON file." ) if is_local: logger.info(f"loading configuration file {resolved_video_processor_file}") else: logger.info( f"loading configuration file {video_processor_file} from cache at {resolved_video_processor_file}" ) return video_processor_dict, kwargs @classmethod def from_dict(cls, video_processor_dict: dict[str, Any], **kwargs): """ Instantiates a type of [`~video_processing_utils.VideoProcessorBase`] from a Python dictionary of parameters. Args: video_processor_dict (`dict[str, Any]`): Dictionary that will be used to instantiate the video processor object. Such a dictionary can be retrieved from a pretrained checkpoint by leveraging the [`~video_processing_utils.VideoProcessorBase.to_dict`] method. kwargs (`dict[str, Any]`): Additional parameters from which to initialize the video processor object. Returns: [`~video_processing_utils.VideoProcessorBase`]: The video processor object instantiated from those parameters. """ video_processor_dict = video_processor_dict.copy() return_unused_kwargs = kwargs.pop("return_unused_kwargs", False) # The `size` parameter is a dict and was previously an int or tuple in feature extractors. # We set `size` here directly to the `video_processor_dict` so that it is converted to the appropriate # dict within the video processor and isn't overwritten if `size` is passed in as a kwarg. if "size" in kwargs and "size" in video_processor_dict: video_processor_dict["size"] = kwargs.pop("size") if "crop_size" in kwargs and "crop_size" in video_processor_dict: video_processor_dict["crop_size"] = kwargs.pop("crop_size") video_processor = cls(**video_processor_dict) # Update video_processor with kwargs if needed to_remove = [] for key, value in kwargs.items(): if hasattr(video_processor, key): setattr(video_processor, key, value) to_remove.append(key) for key in to_remove: kwargs.pop(key, None) logger.info(f"Video processor {video_processor}") if return_unused_kwargs: return video_processor, kwargs else: return video_processor def to_dict(self) -> dict[str, Any]: """ Serializes this instance to a Python dictionary. Returns: `dict[str, Any]`: Dictionary of all the attributes that make up this video processor instance. """ output = deepcopy(self.__dict__) output.pop("model_valid_processing_keys", None) output.pop("_valid_kwargs_names", None) output["video_processor_type"] = self.__class__.__name__ return output def to_json_string(self) -> str: """ Serializes this instance to a JSON string. Returns: `str`: String containing all the attributes that make up this feature_extractor instance in JSON format. """ dictionary = self.to_dict() for key, value in dictionary.items(): if isinstance(value, np.ndarray): dictionary[key] = value.tolist() # make sure private name "_processor_class" is correctly # saved as "processor_class" _processor_class = dictionary.pop("_processor_class", None) if _processor_class is not None: dictionary["processor_class"] = _processor_class return json.dumps(dictionary, indent=2, sort_keys=True) + "\n" def to_json_file(self, json_file_path: Union[str, os.PathLike]): """ Save this instance to a JSON file. Args: json_file_path (`str` or `os.PathLike`): Path to the JSON file in which this image_processor instance's parameters will be saved. """ with open(json_file_path, "w", encoding="utf-8") as writer: writer.write(self.to_json_string()) def __repr__(self): return f"{self.__class__.__name__} {self.to_json_string()}" @classmethod def from_json_file(cls, json_file: Union[str, os.PathLike]): """ Instantiates a video processor of type [`~video_processing_utils.VideoProcessorBase`] from the path to a JSON file of parameters. Args: json_file (`str` or `os.PathLike`): Path to the JSON file containing the parameters. Returns: A video processor of type [`~video_processing_utils.VideoProcessorBase`]: The video_processor object instantiated from that JSON file. """ with open(json_file, "r", encoding="utf-8") as reader: text = reader.read() video_processor_dict = json.loads(text) return cls(**video_processor_dict) @classmethod def register_for_auto_class(cls, auto_class="AutoVideoProcessor"): """ Register this class with a given auto class. This should only be used for custom video processors as the ones in the library are already mapped with `AutoVideoProcessor `. This API is experimental and may have some slight breaking changes in the next releases. Args: auto_class (`str` or `type`, *optional*, defaults to `"AutoVideoProcessor "`): The auto class to register this new video processor with. """ if not isinstance(auto_class, str): auto_class = auto_class.__name__ import transformers.models.auto as auto_module if not hasattr(auto_module, auto_class): raise ValueError(f"{auto_class} is not a valid auto class.") cls._auto_class = auto_class def fetch_videos(self, video_url_or_urls: Union[str, list[str]]): """ Convert a single or a list of urls into the corresponding `np.array` objects. If a single url is passed, the return value will be a single object. If a list is passed a list of objects is returned. """ if isinstance(video_url_or_urls, list): return [self.fetch_videos(x) for x in video_url_or_urls] elif isinstance(video_url_or_urls, str): return load_video(video_url_or_urls) else: raise TypeError(f"only a single or a list of entries is supported but got type={type(video_url_or_urls)}") BaseVideoProcessor.push_to_hub = copy_func(BaseVideoProcessor.push_to_hub) if BaseVideoProcessor.push_to_hub.__doc__ is not None: BaseVideoProcessor.push_to_hub.__doc__ = BaseVideoProcessor.push_to_hub.__doc__.format( object="video processor", object_class="AutoVideoProcessor", object_files="video processor file" )