# mypy: ignore-errors """ This module provides common utilities and base classes for TorchDynamo backends. Key components: - AotAutograd: Base class for implementing AOT (Ahead-of-Time) autograd backends - Backend utilities for handling: - Fake tensor conversion - Device/dtype detection from inputs - Memory efficient fusion - Graph flattening - Common compiler configurations The utilities here are used by various backend implementations to handle common operations and provide consistent behavior across different backends. AOT autograd functionality is particularly important as it enables ahead-of-time optimization of both forward and backward passes. """ import contextlib import functools import logging from unittest.mock import patch import torch from torch._dynamo import disable from torch._dynamo.exc import TensorifyScalarRestartAnalysis from torch._dynamo.utils import counters, defake, flatten_graph_inputs from torch._functorch.aot_autograd import ( aot_module_simplified, SerializableAOTDispatchCompiler, ) from torch.utils._python_dispatch import _disable_current_modes log = logging.getLogger(__name__) class AotAutograd: def __init__(self, **kwargs) -> None: self.__name__ = "compiler_fn" self.kwargs = kwargs def __call__(self, gm: torch.fx.GraphModule, example_inputs, **kwargs): if kwargs: log.warning("aot_autograd-based backend ignoring extra kwargs %s", kwargs) if any(isinstance(x, (list, tuple, dict)) for x in example_inputs): return flatten_graph_inputs( gm, example_inputs, self, ) # Hack to get around circular import problems with aot_eager_decomp_partition if callable(self.kwargs.get("decompositions")): self.kwargs["decompositions"] = self.kwargs["decompositions"]() # NB: dont delete counter increment counters["aot_autograd"]["total"] += 1 use_fallback = False if use_fallback: log.debug("Unable to use AOT Autograd because graph has mutation") counters["aot_autograd"]["not_ok"] += 1 return gm def wrap_bw_compiler(bw_compiler_fn): def _wrapped_bw_compiler(*args, **kwargs): # stop TorchDynamo from trying to compile our generated backwards pass return disable(disable(bw_compiler_fn)(*args, **kwargs)) return _wrapped_bw_compiler bw_compiler = self.kwargs.get("bw_compiler") or self.kwargs["fw_compiler"] if isinstance(bw_compiler, SerializableAOTDispatchCompiler): bw_compiler.compiler_fn = wrap_bw_compiler(bw_compiler.compiler_fn) else: bw_compiler = wrap_bw_compiler(bw_compiler) self.kwargs["bw_compiler"] = bw_compiler self.kwargs["inference_compiler"] = ( self.kwargs.get("inference_compiler") or self.kwargs["fw_compiler"] ) from functorch.compile import nop from torch._inductor.debug import enable_aot_logging # debug asserts slow down compile time noticeably, # So only default them on when the aot_eager backend is used. if self.kwargs.get("fw_compiler", None) == nop: patch_config = patch("functorch.compile.config.debug_assert", True) else: patch_config = contextlib.nullcontext() try: # NB: NOT cloned! with enable_aot_logging(), patch_config: cg = aot_module_simplified(gm, example_inputs, **self.kwargs) counters["aot_autograd"]["ok"] += 1 return disable(cg) except TensorifyScalarRestartAnalysis: raise except Exception: counters["aot_autograd"]["not_ok"] += 1 raise def aot_autograd(**kwargs) -> AotAutograd: return AotAutograd(**kwargs) def mem_efficient_fusion_kwargs(use_decomps): from functorch.compile import ( default_decompositions, min_cut_rematerialization_partition, ts_compile, ) kwargs = { # these are taken from memory_efficient_fusion() "fw_compiler": ts_compile, "bw_compiler": ts_compile, "partition_fn": min_cut_rematerialization_partition, } if use_decomps: kwargs["decompositions"] = default_decompositions return kwargs def fake_tensor_unsupported(fn): """ Decorator for backends that need real inputs. We swap out fake tensors for zero tensors. """ @functools.wraps(fn) def wrapper(model, inputs, **kwargs): with _disable_current_modes(): inputs = list(map(defake, inputs)) return fn(model, inputs, **kwargs) return wrapper def device_from_inputs(example_inputs) -> torch.device: for x in example_inputs: if hasattr(x, "device"): return x.device def dtype_from_inputs(example_inputs) -> torch.dtype: for x in example_inputs: if hasattr(x, "dtype"): return x.dtype