import math from inspect import isfunction import torch import torch.nn.functional as F from torch import nn class AttentionBlockNew(nn.Module): """ An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted to the N-d case. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. Uses three q, k, v linear layers to compute attention """ def __init__( self, channels, num_head_channels=None, num_groups=32, rescale_output_factor=1.0, eps=1e-5, ): super().__init__() self.channels = channels self.num_heads = channels // num_head_channels if num_head_channels is not None else 1 self.num_head_size = num_head_channels self.group_norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True) # define q,k,v as linear layers self.query = nn.Linear(channels, channels) self.key = nn.Linear(channels, channels) self.value = nn.Linear(channels, channels) self.rescale_output_factor = rescale_output_factor self.proj_attn = nn.Linear(channels, channels, 1) def transpose_for_scores(self, projection: torch.Tensor) -> torch.Tensor: new_projection_shape = projection.size()[:-1] + (self.num_heads, -1) # move heads to 2nd position (B, T, H * D) -> (B, T, H, D) -> (B, H, T, D) new_projection = projection.view(new_projection_shape).permute(0, 2, 1, 3) return new_projection def forward(self, hidden_states): residual = hidden_states batch, channel, height, width = hidden_states.shape # norm hidden_states = self.group_norm(hidden_states) hidden_states = hidden_states.view(batch, channel, height * width).transpose(1, 2) # proj to q, k, v query_proj = self.query(hidden_states) key_proj = self.key(hidden_states) value_proj = self.value(hidden_states) # transpose query_states = self.transpose_for_scores(query_proj) key_states = self.transpose_for_scores(key_proj) value_states = self.transpose_for_scores(value_proj) # get scores scale = 1 / math.sqrt(math.sqrt(self.channels / self.num_heads)) attention_scores = torch.matmul(query_states * scale, key_states.transpose(-1, -2) * scale) attention_probs = torch.softmax(attention_scores.float(), dim=-1).type(attention_scores.dtype) # compute attention output context_states = torch.matmul(attention_probs, value_states) context_states = context_states.permute(0, 2, 1, 3).contiguous() new_context_states_shape = context_states.size()[:-2] + (self.channels,) context_states = context_states.view(new_context_states_shape) # compute next hidden_states hidden_states = self.proj_attn(context_states) hidden_states = hidden_states.transpose(-1, -2).reshape(batch, channel, height, width) # res connect and rescale hidden_states = (hidden_states + residual) / self.rescale_output_factor return hidden_states def set_weight(self, attn_layer): self.group_norm.weight.data = attn_layer.norm.weight.data self.group_norm.bias.data = attn_layer.norm.bias.data if hasattr(attn_layer, "q"): self.query.weight.data = attn_layer.q.weight.data[:, :, 0, 0] self.key.weight.data = attn_layer.k.weight.data[:, :, 0, 0] self.value.weight.data = attn_layer.v.weight.data[:, :, 0, 0] self.query.bias.data = attn_layer.q.bias.data self.key.bias.data = attn_layer.k.bias.data self.value.bias.data = attn_layer.v.bias.data self.proj_attn.weight.data = attn_layer.proj_out.weight.data[:, :, 0, 0] self.proj_attn.bias.data = attn_layer.proj_out.bias.data elif hasattr(attn_layer, "NIN_0"): self.query.weight.data = attn_layer.NIN_0.W.data.T self.key.weight.data = attn_layer.NIN_1.W.data.T self.value.weight.data = attn_layer.NIN_2.W.data.T self.query.bias.data = attn_layer.NIN_0.b.data self.key.bias.data = attn_layer.NIN_1.b.data self.value.bias.data = attn_layer.NIN_2.b.data self.proj_attn.weight.data = attn_layer.NIN_3.W.data.T self.proj_attn.bias.data = attn_layer.NIN_3.b.data self.group_norm.weight.data = attn_layer.GroupNorm_0.weight.data self.group_norm.bias.data = attn_layer.GroupNorm_0.bias.data else: qkv_weight = attn_layer.qkv.weight.data.reshape( self.num_heads, 3 * self.channels // self.num_heads, self.channels ) qkv_bias = attn_layer.qkv.bias.data.reshape(self.num_heads, 3 * self.channels // self.num_heads) q_w, k_w, v_w = qkv_weight.split(self.channels // self.num_heads, dim=1) q_b, k_b, v_b = qkv_bias.split(self.channels // self.num_heads, dim=1) self.query.weight.data = q_w.reshape(-1, self.channels) self.key.weight.data = k_w.reshape(-1, self.channels) self.value.weight.data = v_w.reshape(-1, self.channels) self.query.bias.data = q_b.reshape(-1) self.key.bias.data = k_b.reshape(-1) self.value.bias.data = v_b.reshape(-1) self.proj_attn.weight.data = attn_layer.proj.weight.data[:, :, 0] self.proj_attn.bias.data = attn_layer.proj.bias.data class SpatialTransformer(nn.Module): """ Transformer block for image-like data. First, project the input (aka embedding) and reshape to b, t, d. Then apply standard transformer action. Finally, reshape to image """ def __init__(self, in_channels, n_heads, d_head, depth=1, dropout=0.0, context_dim=None): super().__init__() self.n_heads = n_heads self.d_head = d_head self.in_channels = in_channels inner_dim = n_heads * d_head self.norm = torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) self.proj_in = nn.Conv2d(in_channels, inner_dim, kernel_size=1, stride=1, padding=0) self.transformer_blocks = nn.ModuleList( [ BasicTransformerBlock(inner_dim, n_heads, d_head, dropout=dropout, context_dim=context_dim) for d in range(depth) ] ) self.proj_out = nn.Conv2d(inner_dim, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, context=None): # note: if no context is given, cross-attention defaults to self-attention b, c, h, w = x.shape x_in = x x = self.norm(x) x = self.proj_in(x) x = x.permute(0, 2, 3, 1).reshape(b, h * w, c) for block in self.transformer_blocks: x = block(x, context=context) x = x.reshape(b, h, w, c).permute(0, 3, 1, 2) x = self.proj_out(x) return x + x_in def set_weight(self, layer): self.norm = layer.norm self.proj_in = layer.proj_in self.transformer_blocks = layer.transformer_blocks self.proj_out = layer.proj_out class BasicTransformerBlock(nn.Module): def __init__(self, dim, n_heads, d_head, dropout=0.0, context_dim=None, gated_ff=True, checkpoint=True): super().__init__() self.attn1 = CrossAttention( query_dim=dim, heads=n_heads, dim_head=d_head, dropout=dropout ) # is a self-attention self.ff = FeedForward(dim, dropout=dropout, glu=gated_ff) self.attn2 = CrossAttention( query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, dropout=dropout ) # is self-attn if context is none self.norm1 = nn.LayerNorm(dim) self.norm2 = nn.LayerNorm(dim) self.norm3 = nn.LayerNorm(dim) self.checkpoint = checkpoint def forward(self, x, context=None): x = self.attn1(self.norm1(x)) + x x = self.attn2(self.norm2(x), context=context) + x x = self.ff(self.norm3(x)) + x return x class CrossAttention(nn.Module): def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0.0): super().__init__() inner_dim = dim_head * heads context_dim = default(context_dim, query_dim) self.scale = dim_head**-0.5 self.heads = heads self.to_q = nn.Linear(query_dim, inner_dim, bias=False) self.to_k = nn.Linear(context_dim, inner_dim, bias=False) self.to_v = nn.Linear(context_dim, inner_dim, bias=False) self.to_out = nn.Sequential(nn.Linear(inner_dim, query_dim), nn.Dropout(dropout)) def reshape_heads_to_batch_dim(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size, seq_len, head_size, dim // head_size) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size * head_size, seq_len, dim // head_size) return tensor def reshape_batch_dim_to_heads(self, tensor): batch_size, seq_len, dim = tensor.shape head_size = self.heads tensor = tensor.reshape(batch_size // head_size, head_size, seq_len, dim) tensor = tensor.permute(0, 2, 1, 3).reshape(batch_size // head_size, seq_len, dim * head_size) return tensor def forward(self, x, context=None, mask=None): batch_size, sequence_length, dim = x.shape h = self.heads q = self.to_q(x) context = default(context, x) k = self.to_k(context) v = self.to_v(context) q = self.reshape_heads_to_batch_dim(q) k = self.reshape_heads_to_batch_dim(k) v = self.reshape_heads_to_batch_dim(v) sim = torch.einsum("b i d, b j d -> b i j", q, k) * self.scale if exists(mask): mask = mask.reshape(batch_size, -1) max_neg_value = -torch.finfo(sim.dtype).max mask = mask[:, None, :].repeat(h, 1, 1) sim.masked_fill_(~mask, max_neg_value) # attention, what we cannot get enough of attn = sim.softmax(dim=-1) out = torch.einsum("b i j, b j d -> b i d", attn, v) out = self.reshape_batch_dim_to_heads(out) return self.to_out(out) class FeedForward(nn.Module): def __init__(self, dim, dim_out=None, mult=4, glu=False, dropout=0.0): super().__init__() inner_dim = int(dim * mult) dim_out = default(dim_out, dim) project_in = nn.Sequential(nn.Linear(dim, inner_dim), nn.GELU()) if not glu else GEGLU(dim, inner_dim) self.net = nn.Sequential(project_in, nn.Dropout(dropout), nn.Linear(inner_dim, dim_out)) def forward(self, x): return self.net(x) # feedforward class GEGLU(nn.Module): def __init__(self, dim_in, dim_out): super().__init__() self.proj = nn.Linear(dim_in, dim_out * 2) def forward(self, x): x, gate = self.proj(x).chunk(2, dim=-1) return x * F.gelu(gate) # TODO(Patrick) - remove once all weights have been converted -> not needed anymore then class NIN(nn.Module): def __init__(self, in_dim, num_units, init_scale=0.1): super().__init__() self.W = nn.Parameter(torch.zeros(in_dim, num_units), requires_grad=True) self.b = nn.Parameter(torch.zeros(num_units), requires_grad=True) def exists(val): return val is not None def default(val, d): if exists(val): return val return d() if isfunction(d) else d # the main attention block that is used for all models class AttentionBlock(nn.Module): """ An attention block that allows spatial positions to attend to each other. Originally ported from here, but adapted to the N-d case. https://github.com/hojonathanho/diffusion/blob/1e0dceb3b3495bbe19116a5e1b3596cd0706c543/diffusion_tf/models/unet.py#L66. """ def __init__( self, channels, num_heads=1, num_head_channels=None, num_groups=32, encoder_channels=None, overwrite_qkv=False, overwrite_linear=False, rescale_output_factor=1.0, eps=1e-5, ): super().__init__() self.channels = channels if num_head_channels is None: self.num_heads = num_heads else: assert ( channels % num_head_channels == 0 ), f"q,k,v channels {channels} is not divisible by num_head_channels {num_head_channels}" self.num_heads = channels // num_head_channels self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=eps, affine=True) self.qkv = nn.Conv1d(channels, channels * 3, 1) self.n_heads = self.num_heads self.rescale_output_factor = rescale_output_factor if encoder_channels is not None: self.encoder_kv = nn.Conv1d(encoder_channels, channels * 2, 1) self.proj = nn.Conv1d(channels, channels, 1) self.overwrite_qkv = overwrite_qkv self.overwrite_linear = overwrite_linear if overwrite_qkv: in_channels = channels self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-6) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) elif self.overwrite_linear: num_groups = min(channels // 4, 32) self.norm = nn.GroupNorm(num_channels=channels, num_groups=num_groups, eps=1e-6) self.NIN_0 = NIN(channels, channels) self.NIN_1 = NIN(channels, channels) self.NIN_2 = NIN(channels, channels) self.NIN_3 = NIN(channels, channels) self.GroupNorm_0 = nn.GroupNorm(num_groups=num_groups, num_channels=channels, eps=1e-6) else: self.proj_out = nn.Conv1d(channels, channels, 1) self.set_weights(self) self.is_overwritten = False def set_weights(self, module): if self.overwrite_qkv: qkv_weight = torch.cat([module.q.weight.data, module.k.weight.data, module.v.weight.data], dim=0)[ :, :, :, 0 ] qkv_bias = torch.cat([module.q.bias.data, module.k.bias.data, module.v.bias.data], dim=0) self.qkv.weight.data = qkv_weight self.qkv.bias.data = qkv_bias proj_out = nn.Conv1d(self.channels, self.channels, 1) proj_out.weight.data = module.proj_out.weight.data[:, :, :, 0] proj_out.bias.data = module.proj_out.bias.data self.proj = proj_out elif self.overwrite_linear: self.qkv.weight.data = torch.concat( [self.NIN_0.W.data.T, self.NIN_1.W.data.T, self.NIN_2.W.data.T], dim=0 )[:, :, None] self.qkv.bias.data = torch.concat([self.NIN_0.b.data, self.NIN_1.b.data, self.NIN_2.b.data], dim=0) self.proj.weight.data = self.NIN_3.W.data.T[:, :, None] self.proj.bias.data = self.NIN_3.b.data self.norm.weight.data = self.GroupNorm_0.weight.data self.norm.bias.data = self.GroupNorm_0.bias.data else: self.proj.weight.data = self.proj_out.weight.data self.proj.bias.data = self.proj_out.bias.data def forward(self, x, encoder_out=None): if not self.is_overwritten and (self.overwrite_qkv or self.overwrite_linear): self.set_weights(self) self.is_overwritten = True b, c, *spatial = x.shape hid_states = self.norm(x).view(b, c, -1) qkv = self.qkv(hid_states) bs, width, length = qkv.shape assert width % (3 * self.n_heads) == 0 ch = width // (3 * self.n_heads) q, k, v = qkv.reshape(bs * self.n_heads, ch * 3, length).split(ch, dim=1) if encoder_out is not None: encoder_kv = self.encoder_kv(encoder_out) assert encoder_kv.shape[1] == self.n_heads * ch * 2 ek, ev = encoder_kv.reshape(bs * self.n_heads, ch * 2, -1).split(ch, dim=1) k = torch.cat([ek, k], dim=-1) v = torch.cat([ev, v], dim=-1) scale = 1 / math.sqrt(math.sqrt(ch)) weight = torch.einsum("bct,bcs->bts", q * scale, k * scale) # More stable with f16 than dividing afterwards weight = torch.softmax(weight.float(), dim=-1).type(weight.dtype) a = torch.einsum("bts,bcs->bct", weight, v) h = a.reshape(bs, -1, length) h = self.proj(h) h = h.reshape(b, c, *spatial) result = x + h result = result / self.rescale_output_factor return result