# Copyright 2022 NVIDIA and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin class KarrasVeScheduler(SchedulerMixin, ConfigMixin): """ Stochastic sampling from Karras et al. [1] tailored to the Variance-Expanding (VE) models [2]. Use Algorithm 2 and the VE column of Table 1 from [1] for reference. [1] Karras, Tero, et al. "Elucidating the Design Space of Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364 [2] Song, Yang, et al. "Score-based generative modeling through stochastic differential equations." https://arxiv.org/abs/2011.13456 """ @register_to_config def __init__( self, sigma_min=0.02, sigma_max=100, s_noise=1.007, s_churn=80, s_min=0.05, s_max=50, tensor_format="pt", ): """ For more details on the parameters, see the original paper's Appendix E.: "Elucidating the Design Space of Diffusion-Based Generative Models." https://arxiv.org/abs/2206.00364. The grid search values used to find the optimal {s_noise, s_churn, s_min, s_max} for a specific model are described in Table 5 of the paper. Args: sigma_min (`float`): minimum noise magnitude sigma_max (`float`): maximum noise magnitude s_noise (`float`): the amount of additional noise to counteract loss of detail during sampling. A reasonable range is [1.000, 1.011]. s_churn (`float`): the parameter controlling the overall amount of stochasticity. A reasonable range is [0, 100]. s_min (`float`): the start value of the sigma range where we add noise (enable stochasticity). A reasonable range is [0, 10]. s_max (`float`): the end value of the sigma range where we add noise. A reasonable range is [0.2, 80]. """ # setable values self.num_inference_steps = None self.timesteps = None self.schedule = None # sigma(t_i) self.tensor_format = tensor_format self.set_format(tensor_format=tensor_format) def set_timesteps(self, num_inference_steps): self.num_inference_steps = num_inference_steps self.timesteps = np.arange(0, self.num_inference_steps)[::-1].copy() self.schedule = [ (self.sigma_max * (self.sigma_min**2 / self.sigma_max**2) ** (i / (num_inference_steps - 1))) for i in self.timesteps ] self.schedule = np.array(self.schedule, dtype=np.float32) self.set_format(tensor_format=self.tensor_format) def add_noise_to_input(self, sample, sigma, generator=None): """ Explicit Langevin-like "churn" step of adding noise to the sample according to a factor gamma_i ≥ 0 to reach a higher noise level sigma_hat = sigma_i + gamma_i*sigma_i. """ if self.s_min <= sigma <= self.s_max: gamma = min(self.s_churn / self.num_inference_steps, 2**0.5 - 1) else: gamma = 0 # sample eps ~ N(0, S_noise^2 * I) eps = self.s_noise * torch.randn(sample.shape, generator=generator).to(sample.device) sigma_hat = sigma + gamma * sigma sample_hat = sample + ((sigma_hat**2 - sigma**2) ** 0.5 * eps) return sample_hat, sigma_hat def step( self, model_output: Union[torch.FloatTensor, np.ndarray], sigma_hat: float, sigma_prev: float, sample_hat: Union[torch.FloatTensor, np.ndarray], ): pred_original_sample = sample_hat + sigma_hat * model_output derivative = (sample_hat - pred_original_sample) / sigma_hat sample_prev = sample_hat + (sigma_prev - sigma_hat) * derivative return {"prev_sample": sample_prev, "derivative": derivative} def step_correct( self, model_output: Union[torch.FloatTensor, np.ndarray], sigma_hat: float, sigma_prev: float, sample_hat: Union[torch.FloatTensor, np.ndarray], sample_prev: Union[torch.FloatTensor, np.ndarray], derivative: Union[torch.FloatTensor, np.ndarray], ): pred_original_sample = sample_prev + sigma_prev * model_output derivative_corr = (sample_prev - pred_original_sample) / sigma_prev sample_prev = sample_hat + (sigma_prev - sigma_hat) * (0.5 * derivative + 0.5 * derivative_corr) return {"prev_sample": sample_prev, "derivative": derivative_corr} def add_noise(self, original_samples, noise, timesteps): raise NotImplementedError()