# Copyright 2022 Katherine Crowson and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import List, Union import numpy as np import torch from scipy import integrate from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin class LMSDiscreteScheduler(SchedulerMixin, ConfigMixin): @register_to_config def __init__( self, num_train_timesteps=1000, beta_start=0.0001, beta_end=0.02, beta_schedule="linear", trained_betas=None, timestep_values=None, tensor_format="pt", ): """ Linear Multistep Scheduler for discrete beta schedules. Based on the original k-diffusion implementation by Katherine Crowson: https://github.com/crowsonkb/k-diffusion/blob/481677d114f6ea445aa009cf5bd7a9cdee909e47/k_diffusion/sampling.py#L181 """ if beta_schedule == "linear": self.betas = np.linspace(beta_start, beta_end, num_train_timesteps, dtype=np.float32) elif beta_schedule == "scaled_linear": # this schedule is very specific to the latent diffusion model. self.betas = np.linspace(beta_start**0.5, beta_end**0.5, num_train_timesteps, dtype=np.float32) ** 2 else: raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}") self.alphas = 1.0 - self.betas self.alphas_cumprod = np.cumprod(self.alphas, axis=0) self.sigmas = ((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5 # setable values self.num_inference_steps = None self.timesteps = np.arange(0, num_train_timesteps)[::-1].copy() self.derivatives = [] self.tensor_format = tensor_format self.set_format(tensor_format=tensor_format) def get_lms_coefficient(self, order, t, current_order): """ Compute a linear multistep coefficient """ def lms_derivative(tau): prod = 1.0 for k in range(order): if current_order == k: continue prod *= (tau - self.sigmas[t - k]) / (self.sigmas[t - current_order] - self.sigmas[t - k]) return prod integrated_coeff = integrate.quad(lms_derivative, self.sigmas[t], self.sigmas[t + 1], epsrel=1e-4)[0] return integrated_coeff def set_timesteps(self, num_inference_steps): self.num_inference_steps = num_inference_steps self.timesteps = np.linspace(self.num_train_timesteps - 1, 0, num_inference_steps, dtype=float) low_idx = np.floor(self.timesteps).astype(int) high_idx = np.ceil(self.timesteps).astype(int) frac = np.mod(self.timesteps, 1.0) sigmas = np.array(((1 - self.alphas_cumprod) / self.alphas_cumprod) ** 0.5) sigmas = (1 - frac) * sigmas[low_idx] + frac * sigmas[high_idx] self.sigmas = np.concatenate([sigmas, [0.0]]) self.derivatives = [] self.set_format(tensor_format=self.tensor_format) def step( self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray], order: int = 4, ): sigma = self.sigmas[timestep] # 1. compute predicted original sample (x_0) from sigma-scaled predicted noise pred_original_sample = sample - sigma * model_output # 2. Convert to an ODE derivative derivative = (sample - pred_original_sample) / sigma self.derivatives.append(derivative) if len(self.derivatives) > order: self.derivatives.pop(0) # 3. Compute linear multistep coefficients order = min(timestep + 1, order) lms_coeffs = [self.get_lms_coefficient(order, timestep, curr_order) for curr_order in range(order)] # 4. Compute previous sample based on the derivatives path prev_sample = sample + sum( coeff * derivative for coeff, derivative in zip(lms_coeffs, reversed(self.derivatives)) ) return {"prev_sample": prev_sample} def add_noise(self, original_samples, noise, timesteps): alpha_prod = self.alphas_cumprod[timesteps] alpha_prod = self.match_shape(alpha_prod, original_samples) noisy_samples = (alpha_prod**0.5) * original_samples + ((1 - alpha_prod) ** 0.5) * noise return noisy_samples def __len__(self): return self.config.num_train_timesteps