# Copyright 2022 Google Brain and The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # DISCLAIMER: This file is strongly influenced by https://github.com/yang-song/score_sde_pytorch # TODO(Patrick, Anton, Suraj) - make scheduler framework indepedent and clean-up a bit from typing import Union import numpy as np import torch from ..configuration_utils import ConfigMixin, register_to_config from .scheduling_utils import SchedulerMixin class ScoreSdeVeScheduler(SchedulerMixin, ConfigMixin): """ The variance exploding stochastic differential equation (SDE) scheduler. :param snr: coefficient weighting the step from the model_output sample (from the network) to the random noise. :param sigma_min: initial noise scale for sigma sequence in sampling procedure. The minimum sigma should mirror the distribution of the data. :param sigma_max: :param sampling_eps: the end value of sampling, where timesteps decrease progessively from 1 to epsilon. :param correct_steps: number of correction steps performed on a produced sample. :param tensor_format: "np" or "pt" for the expected format of samples passed to the Scheduler. """ @register_to_config def __init__( self, num_train_timesteps=2000, snr=0.15, sigma_min=0.01, sigma_max=1348, sampling_eps=1e-5, correct_steps=1, tensor_format="pt", ): # self.sigmas = None # self.discrete_sigmas = None # # # setable values # self.num_inference_steps = None self.timesteps = None self.set_sigmas(num_train_timesteps, sigma_min, sigma_max, sampling_eps) self.tensor_format = tensor_format self.set_format(tensor_format=tensor_format) def set_timesteps(self, num_inference_steps, sampling_eps=None): sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps tensor_format = getattr(self, "tensor_format", "pt") if tensor_format == "np": self.timesteps = np.linspace(1, sampling_eps, num_inference_steps) elif tensor_format == "pt": self.timesteps = torch.linspace(1, sampling_eps, num_inference_steps) else: raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") def set_sigmas(self, num_inference_steps, sigma_min=None, sigma_max=None, sampling_eps=None): sigma_min = sigma_min if sigma_min is not None else self.config.sigma_min sigma_max = sigma_max if sigma_max is not None else self.config.sigma_max sampling_eps = sampling_eps if sampling_eps is not None else self.config.sampling_eps if self.timesteps is None: self.set_timesteps(num_inference_steps, sampling_eps) tensor_format = getattr(self, "tensor_format", "pt") if tensor_format == "np": self.discrete_sigmas = np.exp(np.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps)) self.sigmas = np.array([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) elif tensor_format == "pt": self.discrete_sigmas = torch.exp(torch.linspace(np.log(sigma_min), np.log(sigma_max), num_inference_steps)) self.sigmas = torch.tensor([sigma_min * (sigma_max / sigma_min) ** t for t in self.timesteps]) else: raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") def get_adjacent_sigma(self, timesteps, t): tensor_format = getattr(self, "tensor_format", "pt") if tensor_format == "np": return np.where(timesteps == 0, np.zeros_like(t), self.discrete_sigmas[timesteps - 1]) elif tensor_format == "pt": return torch.where( timesteps == 0, torch.zeros_like(t), self.discrete_sigmas[timesteps - 1].to(timesteps.device) ) raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") def set_seed(self, seed): tensor_format = getattr(self, "tensor_format", "pt") if tensor_format == "np": np.random.seed(seed) elif tensor_format == "pt": torch.manual_seed(seed) else: raise ValueError(f"`self.tensor_format`: {self.tensor_format} is not valid.") def step_pred( self, model_output: Union[torch.FloatTensor, np.ndarray], timestep: int, sample: Union[torch.FloatTensor, np.ndarray], seed=None, ): """ Predict the sample at the previous timestep by reversing the SDE. """ if seed is not None: self.set_seed(seed) # TODO(Patrick) non-PyTorch timestep = timestep * torch.ones( sample.shape[0], device=sample.device ) # torch.repeat_interleave(timestep, sample.shape[0]) timesteps = (timestep * (len(self.timesteps) - 1)).long() sigma = self.discrete_sigmas[timesteps].to(sample.device) adjacent_sigma = self.get_adjacent_sigma(timesteps, timestep) drift = self.zeros_like(sample) diffusion = (sigma**2 - adjacent_sigma**2) ** 0.5 # equation 6 in the paper: the model_output modeled by the network is grad_x log pt(x) # also equation 47 shows the analog from SDE models to ancestral sampling methods drift = drift - diffusion[:, None, None, None] ** 2 * model_output # equation 6: sample noise for the diffusion term of noise = self.randn_like(sample) prev_sample_mean = sample - drift # subtract because `dt` is a small negative timestep # TODO is the variable diffusion the correct scaling term for the noise? prev_sample = prev_sample_mean + diffusion[:, None, None, None] * noise # add impact of diffusion field g return {"prev_sample": prev_sample, "prev_sample_mean": prev_sample_mean} def step_correct( self, model_output: Union[torch.FloatTensor, np.ndarray], sample: Union[torch.FloatTensor, np.ndarray], seed=None, ): """ Correct the predicted sample based on the output model_output of the network. This is often run repeatedly after making the prediction for the previous timestep. """ if seed is not None: self.set_seed(seed) # For small batch sizes, the paper "suggest replacing norm(z) with sqrt(d), where d is the dim. of z" # sample noise for correction noise = self.randn_like(sample) # compute step size from the model_output, the noise, and the snr grad_norm = self.norm(model_output) noise_norm = self.norm(noise) step_size = (self.config.snr * noise_norm / grad_norm) ** 2 * 2 step_size = step_size * torch.ones(sample.shape[0]).to(sample.device) # self.repeat_scalar(step_size, sample.shape[0]) # compute corrected sample: model_output term and noise term prev_sample_mean = sample + step_size[:, None, None, None] * model_output prev_sample = prev_sample_mean + ((step_size * 2) ** 0.5)[:, None, None, None] * noise return {"prev_sample": prev_sample} def __len__(self): return self.config.num_train_timesteps