from typing import Any, Dict, Optional, Union from huggingface_hub.hf_api import InferenceProviderMapping from huggingface_hub.inference._common import RequestParameters, _as_dict from huggingface_hub.inference._providers._common import BaseConversationalTask, TaskProviderHelper, filter_none class SambanovaConversationalTask(BaseConversationalTask): def __init__(self): super().__init__(provider="sambanova", base_url="https://api.sambanova.ai") def _prepare_payload_as_dict( self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping ) -> Optional[Dict]: response_format_config = parameters.get("response_format") if isinstance(response_format_config, dict): if response_format_config.get("type") == "json_schema": json_schema_config = response_format_config.get("json_schema", {}) strict = json_schema_config.get("strict") if isinstance(json_schema_config, dict) and (strict is True or strict is None): json_schema_config["strict"] = False payload = super()._prepare_payload_as_dict(inputs, parameters, provider_mapping_info) return payload class SambanovaFeatureExtractionTask(TaskProviderHelper): def __init__(self): super().__init__(provider="sambanova", base_url="https://api.sambanova.ai", task="feature-extraction") def _prepare_route(self, mapped_model: str, api_key: str) -> str: return "/v1/embeddings" def _prepare_payload_as_dict( self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping ) -> Optional[Dict]: parameters = filter_none(parameters) return {"input": inputs, "model": provider_mapping_info.provider_id, **parameters} def get_response(self, response: Union[bytes, Dict], request_params: Optional[RequestParameters] = None) -> Any: embeddings = _as_dict(response)["data"] return [embedding["embedding"] for embedding in embeddings]