# mypy: allow-untyped-defs import builtins import logging import operator import typing import warnings from collections.abc import Sequence from contextlib import contextmanager from typing import Any, Optional, Union import torch import torch.export._trace from torch import _C from torch._export.passes.replace_quantized_ops_with_standard_ops_pass import ( replace_quantized_ops_with_standard_ops, ) from torch.export.dynamic_shapes import _tree_map_with_path, Dim from torch.export.exported_program import ExportedProgram from torch.export.graph_signature import ( ConstantArgument, CustomObjArgument, InputKind, InputSpec, OutputKind, OutputSpec, TensorArgument, ) from torch.fx import subgraph_rewriter log = logging.getLogger(__name__) def _get_param_count_list(method_graph, args_params): param_count_list = [] for input_, arg_params_ in zip(method_graph.inputs(), args_params): if "PackedParams" in str(input_.type()): in_vars, _ = torch.jit._flatten(arg_params_) param_count_list.append(len(in_vars)) else: param_count_list.append(arg_params_ is not None) return param_count_list def _trace_and_get_graph_from_model(model, args): # A basic sanity check: make sure the state_dict keys are the same # before and after running the model. Fail fast! orig_state_dict_keys = torch.jit._unique_state_dict(model).keys() # Disable Autocast cache because it replaces kernel's weight and bias # by (undesired) constants. # No perf impact for when there are reused weights since https://github.com/pytorch/pytorch/pull/85665 prev_autocast_cache_enabled = torch.is_autocast_cache_enabled() torch.set_autocast_cache_enabled(False) trace_graph, torch_out, _inputs_states = torch.jit._get_trace_graph( model, args, strict=False, _force_outplace=False, _return_inputs_states=True, ) torch.set_autocast_cache_enabled(prev_autocast_cache_enabled) if orig_state_dict_keys != torch.jit._unique_state_dict(model).keys(): raise RuntimeError( "state_dict changed after running the tracer; " "something weird is happening in your model!" ) return trace_graph, torch_out def _create_jit_graph( model: Union[torch.nn.Module, torch.jit.ScriptFunction], args: Sequence[Any] ) -> tuple[torch.Graph, list["_C.IValue"], Any, Optional[torch.ScriptModule]]: if isinstance(model, (torch.jit.ScriptFunction, torch.jit.ScriptModule)): flattened_args = tuple(torch.jit._flatten(tuple(args))[0]) torch_out = None if isinstance(model, torch.jit.ScriptModule): try: graph = model.forward.graph # type: ignore[attr-defined] except AttributeError as e: raise RuntimeError("'forward' method must be a script method") from e _C._jit_pass_onnx_function_substitution(graph) freezed_module = _C._freeze_module( typing.cast(_C.ScriptModule, model._c), preserveParameters=True ) module, params = _C._jit_onnx_list_model_parameters(freezed_module) method_graph = module._get_method("forward").graph args_params = tuple(args) + tuple(params) param_count_list = _get_param_count_list(method_graph, args_params) in_vars, _ = torch.jit._flatten(args_params) graph = _C._propagate_and_assign_input_shapes( method_graph, tuple(in_vars), param_count_list, False, False ) return graph, params, torch_out, module # torch.jit.ScriptFunction params = [] graph = model.graph _C._jit_pass_onnx_function_substitution(graph) param_count_list = _get_param_count_list(graph, args) graph = _C._propagate_and_assign_input_shapes( graph, flattened_args, param_count_list, False, False ) return graph, params, torch_out, None graph, torch_out = _trace_and_get_graph_from_model(model, args) _C._jit_pass_onnx_lint(graph) state_dict = torch.jit._unique_state_dict(model) params = list(state_dict.values()) graph_inputs = list(graph.inputs()) user_input_num = len(graph_inputs) - len(state_dict) param_names = list(state_dict.keys()) for i, inp in enumerate(graph_inputs): if i >= user_input_num: inp.setDebugName(param_names[i - user_input_num]) _C._jit_pass_onnx_function_substitution(graph) return graph, params, torch_out, None def list_add(a, b): return a + b def list_append(container, element): return container + [element] def execute_subgraph_from_prim_loop( subgraph, iter_idx, len_loop_local_arguments, *args, **kwargs ): """ subgraph: GraphModule from sub-block. iter_idx: The index of interation. len_loop_local_arguments: The number of loop local arguments in args. """ # Loop local variables. TS graph create those as inputs because their values # are updated inside the loop. loop_local_args = args[:len_loop_local_arguments] # Global variables that are not passed in as inputs to the loop sub-blocks # but are directly used. Most of time, their values are not updated, but # the only exception is when there are some operations that perform inplace # updates. global_args = args[len_loop_local_arguments:] return subgraph(*global_args, iter_idx, *loop_local_args, **kwargs) def inplace_optimize_sym_size_div(gm: torch.fx.GraphModule): def pattern(im, dim, scale): sym_size_int = torch.ops.aten.sym_size.int(im, dim) scalar_tensor = torch.ops.aten.scalar_tensor(sym_size_int) div_scalar_mode = torch.ops.aten.div.Scalar_mode( scalar_tensor, scale, rounding_mode="trunc" ) int_tensor = torch.ops.aten.Int.Tensor(div_scalar_mode) return int_tensor def replacement(im, dim, scale): sym_size_int = torch.ops.aten.sym_size.int(im, dim) return sym_size_int // scale subgraph_rewriter.replace_pattern(gm, pattern, replacement) def is_valid_for_codegen(name): if len(name) == 0: raise RuntimeError("Empty argument name for codegen") if name[0].isdigit(): return False return True def normalize_name(name: str, prefix: str = "rename") -> str: name = name.replace(".", "_") if is_valid_for_codegen(name): return name return f"{prefix}_{name}" def ir_name_to_func_name(name: str) -> str: """prim::If -> convert_prim_If""" name_list = name.split("::") return "convert_" + "_".join(name_list) def get_node_as_placeholder_or_get_attr(fx_graph, name, is_top_level_graph): if is_top_level_graph: return fx_graph.get_attr(name) return fx_graph.placeholder(name) _TORCH_DTYPE_TO_ENUM = { torch.uint8: 0, torch.int8: 1, torch.int16: 2, torch.int32: 3, torch.int64: 4, torch.float16: 5, torch.float32: 6, torch.float64: 7, torch.complex32: 8, torch.complex64: 9, torch.complex128: 10, torch.bool: 11, torch.qint8: 12, torch.quint8: 13, torch.bfloat16: 15, } _TORCH_ENUM_TO_DTYPE = {value: key for key, value in _TORCH_DTYPE_TO_ENUM.items()} def get_dtype_as_int(tensor): """ prim::dtype has the signature "Tensor a) -> int", where it gets the dtype of the tensor and returns the integer corresponding to this dtype based on the enum in ScalarType.h """ dtype = tensor.dtype if dtype not in _TORCH_DTYPE_TO_ENUM: raise RuntimeError(f"Unsupported dtype {dtype}") return _TORCH_DTYPE_TO_ENUM[dtype] # Those operators will be automatically populated to a instance method # of TS2FXGraphConverter with name convert__(). # Please check __init__ for method population implementations. kind_to_standard_operators = { "prim::max": builtins.max, "prim::min": builtins.min, "prim::TupleIndex": operator.getitem, "aten::__is__": operator.is_, "aten::__isnot__": operator.is_not, "aten::__not__": operator.not_, "aten::__contains__": operator.contains, "prim::dtype": get_dtype_as_int, "aten::len": len, # Mapping from specialized op to its symbolic counterpart. # They currently do not have any other overrides. "aten::numel": torch.ops.aten.sym_numel, "aten::size": torch.ops.aten.sym_size, "aten::storage_offset": torch.ops.aten.sym_storage_offset, "aten::stride": torch.ops.aten.sym_stride, } def get_ir_value_parent_name_and_attr_name(node): irv_parent_name, irv_name = node.input().debugName(), node.output().debugName() attr_name = node.s("name") return irv_name, irv_parent_name, attr_name def construct_fqn(ir, ref_map, name_map): name_list = [] while ir in ref_map: name_list.append(name_map[ir]) ir = ref_map[ir] return ".".join(reversed(name_list)) def get_block_to_lifted_attrs( graph: torch._C.Graph, ) -> tuple[dict[torch._C.Block, set[str]], dict[str, str]]: """ Perform two passes to get a mapping of blocks to a set of FQNs of its lifted attributes. When a graph has control flow, the graph will be divided into multiple blocks. We want to convert each block to a graph which will be passed into torch.cond. A restriction for torch.cond is that model parameters/buffers are expected to be lifted as inputs to the subgraphs. Before converting the model, we will run this pass which will: 1. Figure out which params/buffers are used within blocks through tracing the GetAttr calls. 2. Process the graph bottom up to find the lifted attributes of each block by taking the union of the attributes used in the current block, and the lifted attributes of all its child blocks. Returns: A mapping of blocks to a set of FQNs of its lifted attributes, and a mapping of node names to the FQNs of its lifted attributes. """ # A map from a block to its expected to be lifted arguments. blocks_to_lifted_attrs: dict[torch._C.Block, set[str]] = {} # Reference map stores the input (i.e., src) and output (i.e., dest) IR of a # GetAttr node. By traversing this reference map, we can figure out the # full IR aliasing pass and figure out the FQN of an attribute. # E.g., %2 = GetAttr(linear)[%1] --> node_to_parent_map["%2"] = "%1" node_to_parent_map: dict[str, str] = {} # Used for reconstructing the FQN of an attribute based on the reference map. # In nutshell, for each GetAttr call, GetAttr(input IR, attribute name) -> output IR # This name map stores which attribute name is called for a src IR --> dest IR action. # E.g., %2 = GetAttr(linear)[%1] --> node_to_attr_name["%2"] = "linear" node_to_attr_name: dict[str, str] = {} def _dfs_get_attr_dependency(entry): """ First DFS path to construct reference map and name map. """ for node in entry.nodes(): if node.kind() == "prim::GetAttr": ( irv_name, irv_parent_name, attr_name, ) = get_ir_value_parent_name_and_attr_name(node) node_to_parent_map[irv_name] = irv_parent_name node_to_attr_name[irv_name] = attr_name for block in node.blocks(): _dfs_get_attr_dependency(block) def _map_blocks_to_lifted_attrs(entry): """ Walk the graph in a bottom-up fashion to build the expected to be lifted arguments for each block. """ arguments: set[str] = set() for node in entry.nodes(): for block in node.blocks(): # Recursively build. arguments = arguments.union(_map_blocks_to_lifted_attrs(block)) if node.kind() == "prim::GetAttr": irv_name = node.output().debugName() # Skip for intermediate GetAttr, which will anyway not result a FQN. # E.g., node_to_parent_name: {"%3": "%2", "%2": "%1"} # node_to_attr_name: {"%3": "weight", "%2": "linear", "%1": "self"} # There is only one FQN %3-->%2-->%1: self.linear.weight # %2-->%1 is not a FQN: self.linear if irv_name not in set(node_to_parent_map.values()): arguments.add( construct_fqn(irv_name, node_to_parent_map, node_to_attr_name) ) if not isinstance(entry, torch._C.Graph): # Skip the top level. blocks_to_lifted_attrs[entry] = arguments return arguments _dfs_get_attr_dependency(graph) _map_blocks_to_lifted_attrs(graph) return blocks_to_lifted_attrs, node_to_attr_name def get_attribute_fqn_from_ts_node( name_to_attribute_fqn: dict[str, str], node: torch._C.Node ) -> str: def get_attr(name: str): if name in name_to_attribute_fqn: return name_to_attribute_fqn[name] else: raise ValueError(f"Attribute {name} not found") if node.kind() == "prim::SetAttr": input_name = next(node.inputs()).debugName() elif node.kind() == "prim::GetAttr": input_name = node.input().debugName() else: raise RuntimeError( f"Unexpected node kind when getting attribute fqn. node: {node} " ) attr_name = node.s("name") root_attr_name = get_attr(input_name) attr_fqn = f"{root_attr_name}.{attr_name}" if root_attr_name else attr_name return attr_fqn def get_op_overload(node: torch._C.Node): schema_str = node.schema() assert schema_str != "(no schema)", f"got empty schema for {node}" schema: torch._C.FunctionSchema = torch._C.parse_schema(schema_str) ns, op_name = str(schema.name).split("::") override = schema.overload_name try: op_overload_mod = getattr(torch.ops, ns) op_overload_packet = getattr(op_overload_mod, op_name) if override: op_overload = getattr(op_overload_packet, override) else: op_overload = op_overload_packet.default except Exception as e: raise RuntimeError( f"Unable to find operator {node.kind()} with schema {node.schema()}" ) from e return op_overload class TS2FXGraphConverter: def __init__( self, ts_graph: Union[torch._C.Graph, torch._C.Block], name_to_param: dict[str, torch.Tensor], name_to_buffer: dict[str, torch.Tensor], blocks_to_lifted_attrs: dict[torch._C.Block, set[str]], name_to_non_tensor_attribute: dict[str, Any], name_to_constant: dict[str, Any], name_to_attribute_fqn: dict[str, str], ): self.ts_graph = ts_graph # Mapping of parameter FQN to actual parameter value self.name_to_param = name_to_param # Mapping of buffer FQN to actual buffer value self.name_to_buffer = name_to_buffer self.fx_graph: torch.fx.Graph = torch.fx.Graph() self.input_specs: list[InputSpec] = [] self.output_specs: list[OutputSpec] = [] # Mapping of TS node name to converted FX node self.name_to_node: dict[ str, Union[torch.fx.Node, list[torch.fx.Node], dict[Any, torch.fx.Node]] ] = {} # Mapping of TS node name to constant value (int, str, TorchBind obj, # tensor constants ...) self.name_to_constant: dict[str, Any] = name_to_constant # Mapping from torchscript node output name to attribute fully qualified name self.name_to_attribute_fqn: dict[str, str] = name_to_attribute_fqn # Mapping from fully qualified name to real values or a fx graph node # During convert, this represents the current value of a non-tensor attribute # One use case is: # def forward(self, x): # c1 = self.count # self.count += 1 # c2 = self.count # return x + c1 + c2 self.name_to_non_tensor_attribute_node: dict[str, Any] = {} # Mapping from fully qualified name to initial real values inputs # We separate it from self.name_to_non_tensor_attribute_node since # we need initial real value input when we construct fx.GraphModule self.name_to_non_tensor_attribute: dict[str, Any] = name_to_non_tensor_attribute self.subgraphs: dict[str, torch.fx.GraphModule] = {} # Mapping of block to list of attributes that need to be lifted for each # block self.blocks_to_lifted_attrs = blocks_to_lifted_attrs # Populate methods for the standard operators. for k in kind_to_standard_operators.keys(): handler_func_name = ir_name_to_func_name(k) # Create an indirect function call: # convert__ --> lambda node: _convert_standard_operator(node) setattr( self, handler_func_name, lambda node: self._convert_standard_operators(node), ) # This stores a list of return results that do not appear in the original TS # graph's outputs. The reason we maintain this is because some operations in the sub-block # might have inplace updates to the variable defined in the parent fx graph. After # the execution of that sub-block, the variable defined in the parent fx graph also # needs to be updated. self.name_update_from_subblock_to_parent: set[str] = set() def _is_get_attr_node(self, fqn): return ( fqn in self.name_to_buffer or fqn in self.name_to_param or ( fqn in self.name_to_constant and isinstance(self.name_to_constant[fqn], torch.ScriptObject) ) ) def _convert_block_to_subgraph(self, node: torch._C.Node, arguments: list[str]): subgraph_nodes, subgraph_converters = [], [] for block in node.blocks(): subgraph_converter = TS2FXGraphConverter( block, self.name_to_param, self.name_to_buffer, self.blocks_to_lifted_attrs, {}, self.name_to_constant, self.name_to_attribute_fqn, ) for block_arg in arguments: normalized_block_arg_name = normalize_name(block_arg) placeholder_node = subgraph_converter.fx_graph.placeholder( normalized_block_arg_name ) subgraph_converter.name_to_node[block_arg] = placeholder_node subgraph = subgraph_converter.convert() subgraph_name = self.add_subgraph(subgraph) subgraph_nodes.append(self.fx_graph.get_attr(subgraph_name)) subgraph_converters.append(subgraph_converter) return subgraph_nodes, subgraph_converters def _identify_inputs_as_arguments(self, entry): """ Identify inputs from the innermost sub-block. This is needed for nested sub-blocks when the input is hidden in the nested sub-block. E.g., example IR of input is hidden in the nested sub-block. Graph[x.1] %1 = ... Block[] Block[x.1] %2 = x.1 ... """ arguments: set[str] = set() for block in entry.blocks(): for block_node in block.nodes(): for block_node_in in block_node.inputs(): if ( block_node_in.debugName() in self.name_to_node and block_node_in.debugName() not in self.name_to_attribute_fqn ): arguments.add(block_node_in.debugName()) arguments = arguments.union( self._identify_inputs_as_arguments(block_node) ) return arguments def is_top_level_graph(self): return isinstance(self.ts_graph, torch._C.Graph) def add_subgraph(self, subgraph) -> str: name = f"subgraph_{len(self.subgraphs)}" self.subgraphs[name] = subgraph return name def get_args_kwargs(self, node: torch._C.Node, schema): args = [] kwargs = {} for input, schema_arg in zip(node.inputs(), schema.arguments): if schema_arg.kwarg_only: kwargs[schema_arg.name] = self.get_fx_value_by_ir_value(input) else: args.append(self.get_fx_value_by_ir_value(input)) return tuple(args), kwargs def get_fx_value_by_ir_value(self, value: torch._C.Value): value_name = value.debugName() if value_name in self.name_to_node: input_node = self.name_to_node[value_name] return input_node elif value_name in self.name_to_constant: if isinstance(self.name_to_constant[value_name], torch.ScriptObject): return self.fx_graph.get_attr(value_name) return self.name_to_constant[value_name] elif value_name in self.name_to_attribute_fqn: return self.get_fx_value_by_fqn(self.name_to_attribute_fqn[value_name]) else: raise ValueError(f"Input {value_name} not found") def get_fx_value_by_fqn(self, name): if name in self.name_to_node: fx_node = self.name_to_node[name] elif name in self.name_to_constant: fx_node = self.name_to_constant[name] elif name in self.name_to_non_tensor_attribute_node: fx_node = self.name_to_non_tensor_attribute_node[name] elif name in self.name_to_non_tensor_attribute: fx_node = self.name_to_non_tensor_attribute[name] else: raise ValueError(f"Attribute {name} not found") return fx_node def convert(self) -> torch.fx.GraphModule: self.convert_graph_inputs() for node in self.ts_graph.nodes(): self.convert_node(node) self.convert_graph_outputs() # Pass parameter and buffer to the root for lookup. gm = torch.fx.GraphModule( { **self.subgraphs, **self.name_to_param, **self.name_to_buffer, **self.name_to_non_tensor_attribute, **self.name_to_constant, }, self.fx_graph, ) inplace_optimize_sym_size_div(gm) gm.graph.lint() return gm def convert_graph_inputs(self): for graph_input in self.ts_graph.inputs(): name = graph_input.debugName() if name in self.name_to_param: normalized_name = normalize_name(name) self.input_specs.append( InputSpec( InputKind.PARAMETER, arg=TensorArgument(name=normalized_name), target=name, ) ) fx_node = get_node_as_placeholder_or_get_attr( self.fx_graph, name, self.is_top_level_graph() ) elif name in self.name_to_buffer: normalized_name = normalize_name(name) self.input_specs.append( InputSpec( InputKind.BUFFER, arg=TensorArgument(name=normalized_name), target=name, persistent=True, ) ) fx_node = get_node_as_placeholder_or_get_attr( self.fx_graph, name, self.is_top_level_graph() ) elif name in self.name_to_constant: assert isinstance( self.name_to_constant[name], torch.ScriptObject ), "Input conversion only handles ScriptObject" normalized_name = normalize_name(name) self.input_specs.append( InputSpec( InputKind.CUSTOM_OBJ, arg=CustomObjArgument( name=normalized_name, class_fqn=normalized_name ), target=name, persistent=False, ) ) fx_node = get_node_as_placeholder_or_get_attr( self.fx_graph, name, self.is_top_level_graph() ) elif isinstance(graph_input.type(), torch.ClassType): # Directly skip inputs that are ScriptObject but not used in the graph. continue else: normalized_name = normalize_name(name, prefix="input") self.input_specs.append( InputSpec( InputKind.USER_INPUT, arg=TensorArgument(name=normalized_name), target=name, ) ) fx_node = self.fx_graph.placeholder(normalized_name) self.name_to_node[name] = fx_node def convert_aten_Float(self, node: torch._C.Node): def to_float_tensor(t): return t.to(dtype=torch.float).item() inp_list = [ self.get_fx_value_by_ir_value(inp) for inp in node.inputs() ] # noqa: C416 fx_node = self.fx_graph.call_function( to_float_tensor, tuple(inp_list), ) self.name_to_node[node.output().debugName()] = fx_node def convert_aten_tensor(self, node: torch._C.Node): """aten::tensor creates a constant tensor ad-hoc --> GetAttr""" args, kwargs = self.get_args_kwargs(node, torch.ops.aten.tensor.default._schema) for k in kwargs: if k == "requires_grad": kwargs[k] = bool(kwargs[k]) # 0 -> False, 1 -> True to_tensor = ( torch.tensor if all(isinstance(a, int) for a in args) else torch._refs.tensor ) def target(*args, **kwargs): if "dtype" in kwargs and kwargs["dtype"] is not None: kwargs["dtype"] = _TORCH_ENUM_TO_DTYPE[kwargs["dtype"]] return to_tensor(*args, **kwargs) # def to_dynamic_tensor(*args, **kwargs): # if "dtype" in kwargs and kwargs["dtype"] is not None: # kwargs["dtype"] = _TORCH_ENUM_TO_DTYPE[kwargs["dtype"]] # return torch._refs.tensor(*args, **kwargs) output_name = node.output().debugName() fx_node = self.fx_graph.call_function(target, args, kwargs) self.name_to_node[output_name] = fx_node def convert_aten_append(self, node: torch._C.Node): # special handle python list append: "aten::append.t(t[](a!) self, t(c -> *) el) -> t[](a!)" # inplace append to the list!! This is kinda crazy, as we are inplace mutating the list # This makes the converter "non-functional", and the result depends on the order of the nodes being converter # In a sense, the converter now becomes an stateful interpreter warnings.warn( "Converting aten::append.t, which is a inplace mutation of the list. " "This makes the converter non-functional: the result depends on the order of the append nodes being converter!" ) args = tuple(self.get_fx_value_by_ir_value(inp) for inp in node.inputs()) fx_node = self.fx_graph.call_function(list_append, args) self.name_to_node[node.output().debugName()] = fx_node # inplace mutate arg[0], which is the python list self.name_to_node[node.inputsAt(0).debugName()] = fx_node # Variables that need to be updated to parent module. if not self.is_top_level_graph() and args[0].op == "placeholder": self.name_update_from_subblock_to_parent.add(node.inputsAt(0).debugName()) def convert_prim_Constant(self, node: torch._C.Node): name = node.output().debugName() value: Any = None if node.hasAttribute("value"): constant_kind = node.kindOf("value") if constant_kind == "i": value = node.i("value") elif constant_kind == "f": value = node.f("value") elif constant_kind == "s": value = node.s("value") elif constant_kind == "t": alias_name = ( f"lifted_tensor_{name}" # Follow naming convention from EP tracing. ) fx_node = self.fx_graph.get_attr(alias_name) self.name_to_node[name] = fx_node name, value = alias_name, node.t("value") elif constant_kind == "ival": value = node.ival("value") else: raise ValueError(f"Unsupported constant type: {node.kindOf('value')}") else: value = None self.name_to_constant[name] = value def convert_prim_CallMethod(self, node: torch._C.Node): inp_list = [ self.get_fx_value_by_ir_value(inp) for inp in node.inputs() ] # noqa: C416 fx_node = self.fx_graph.call_method( node.s("name"), tuple(inp_list), ) self.name_to_node[node.output().debugName()] = fx_node def convert_prim_device(self, node: torch._C.Node): input_type = node.input().type() if input_type.isSubtypeOf(torch._C.TensorType.get()): device = input_type.device() # type: ignore[attr-defined] output_name = node.output().debugName() self.name_to_constant[output_name] = device else: raise ValueError(f"Unsupported JitType ({input_type}) when get device") def convert_prim_GetAttr(self, node: torch._C.Node): # Build fully qulified name attr_fqn = get_attribute_fqn_from_ts_node(self.name_to_attribute_fqn, node) output_name = node.output().debugName() self.name_to_attribute_fqn[output_name] = attr_fqn if self.is_top_level_graph(): if self._is_get_attr_node(attr_fqn): # We insert a get_attr node due to two reasons. # First, ts graph does not lift tensor constants as input nodes. So # tensor constants may be ignored by in convert_graph_inputs(). # Second, attr_fqn may have been written to via SetAttr. Two # GetAttr may give different values. self.name_to_node[output_name] = self.fx_graph.get_attr(attr_fqn) else: if attr_fqn not in self.name_to_non_tensor_attribute_node: self.name_to_non_tensor_attribute_node[ attr_fqn ] = self.name_to_non_tensor_attribute[attr_fqn] self.name_to_node[output_name] = self.name_to_non_tensor_attribute_node[ attr_fqn ] else: # Special support for if blocks which do not allow SetAttr TorchScript # node and get_attr FX Graph Node. if self._is_get_attr_node(attr_fqn): self.name_to_node[output_name] = self.name_to_node[attr_fqn] def convert_prim_SetAttr(self, node: torch._C.Node): attr_fqn = get_attribute_fqn_from_ts_node(self.name_to_attribute_fqn, node) attr_value = tuple(node.inputs())[1] ts_graph_tensor_input = self.get_fx_value_by_ir_value(attr_value) if self._is_get_attr_node(attr_fqn): fx_attr_node = self.fx_graph.get_attr(attr_fqn) self.fx_graph.call_function( torch.Tensor.copy_, (fx_attr_node, ts_graph_tensor_input) ) else: self.name_to_non_tensor_attribute_node[attr_fqn] = ts_graph_tensor_input def convert_call_function_op(self, node: torch._C.Node): target = get_op_overload(node) args, kwargs = self.get_args_kwargs(node, target._schema) fx_node = self.fx_graph.call_function(target, args, kwargs) # TODO: covnert sourceRange() into stack_trace # fx_node.meta["stack_trace"] = node.sourceRange() if node.outputsSize() == 1: output_name = node.output().debugName() self.name_to_node[output_name] = fx_node else: for i, outp in enumerate(node.outputs()): output_name = outp.debugName() next_fx_node = self.fx_graph.call_function( operator.getitem, (fx_node, i) ) self.name_to_node[output_name] = next_fx_node def convert_prim_TupleConstruct(self, node: torch._C.Node): self._convert_prim_iterator(node) def convert_prim_ListConstruct(self, node: torch._C.Node): self._convert_prim_iterator(node) def _convert_prim_iterator(self, node: torch._C.Node): output_list = [self.get_fx_value_by_ir_value(inp) for inp in node.inputs()] output_name = node.output().debugName() self.name_to_node[output_name] = output_list def convert_prim_DictConstruct(self, node: torch._C.Node): output_dict = {} k, v = None, None for i, inp in enumerate(node.inputs()): # We assume key value are stored in pair in the DictConstruct. # The first element is the key and the following is the value. if i % 2 == 0: k = self.get_fx_value_by_ir_value(inp) else: v = self.get_fx_value_by_ir_value(inp) assert ( k is not None and v is not None ), "DictConstruct has an empty key value pair." output_dict[k] = v k, v = None, None assert ( k is None and v is None ), "DictConstruct has an odd number of elements (violating our assumption)." output_name = node.output().debugName() self.name_to_node[output_name] = output_dict def convert_prim_ListUnpack(self, node: torch._C.Node): self._convert_prim_unpack_iterator(node) def convert_prim_TupleUnpack(self, node: torch._C.Node): self._convert_prim_unpack_iterator(node) def _convert_prim_unpack_iterator(self, node: torch._C.Node): # Single input and multiple outputs for unpacking. for i, outp in enumerate(node.outputs()): outp_name = outp.debugName() inp = self.get_fx_value_by_ir_value(node.input()) fx_node = self.fx_graph.call_function(operator.getitem, (inp, i)) self.name_to_node[outp_name] = fx_node def convert_aten_Int(self, node: torch._C.Node): # converts aten::Int as aten._to_copy + aten::_local_scalar_dense target = torch.ops.aten._to_copy.default args = tuple(self.get_fx_value_by_ir_value(input) for input in node.inputs()) to_copy_node = self.fx_graph.call_function(target, args, {"dtype": torch.int32}) fx_node = self.fx_graph.call_function( torch.ops.aten._local_scalar_dense.default, (to_copy_node,) ) # TODO: covnert sourceRange() into stack_trace # fx_node.meta["stack_trace"] = node.sourceRange() output_name = node.output().debugName() self.name_to_node[output_name] = fx_node def convert_prim_NumToTensor(self, node: torch._C.Node): # Converts prim::NumToTensor as aten.scalar_tensor. # prim::NumToTensor IRs are currently triggered by: # .size() https://github.com/pytorch/pytorch/blob/main/torch/csrc/jit/frontend/tracer.cpp#L950 # .numel() https://github.com/pytorch/pytorch/blob/main/torch/csrc/jit/frontend/tracer.cpp#L971 # For both of those APIs, torch.jit.trace implicitly sets the output tensor type # to be LongTensor. target = torch.ops.aten.scalar_tensor args = tuple(self.get_fx_value_by_ir_value(input) for input in node.inputs()) fx_node = self.fx_graph.call_function(target, args, {"dtype": torch.long}) output_name = node.output().debugName() self.name_to_node[output_name] = fx_node def convert_prim_CreateObject(self, node: torch._C.Node): output_name = node.output().debugName() self.name_to_attribute_fqn[output_name] = "" def convert_aten__convolution(self, node: torch._C.Node): # converts aten::_convolution as aten.convolution, since aten::_convolution # doesn't have a meta function target = torch.ops.aten.convolution.default args, kwargs = self.get_args_kwargs(node, target._schema) fx_node = self.fx_graph.call_function(target, args, kwargs) output_name = node.output().debugName() self.name_to_node[output_name] = fx_node def convert_aten_div(self, node: torch._C.Node): target = get_op_overload(node) schema = target._schema args, kwargs = self.get_args_kwargs(node, schema) # converts aten::div.Tensor_mode(x, tensor_constant) # as aten.div.Scalar_mode(x, tensor_constant.item()) if schema.overload_name == "Tensor_mode": arg1_name = args[1].name if arg1_name in self.name_to_constant and isinstance( self.name_to_constant[arg1_name], torch.Tensor ): tensor_constant = self.name_to_constant[arg1_name] if tensor_constant.numel() == 1: updated_args = list(args) updated_args[1] = self.name_to_constant[arg1_name].item() fx_node = self.fx_graph.call_function( torch.ops.aten.div.Scalar_mode, tuple(updated_args), kwargs, ) # TODO: covnert sourceRange() into stack_trace # fx_node.meta["stack_trace"] = node.sourceRange() output_name = node.output().debugName() self.name_to_node[output_name] = fx_node return self.convert_call_function_op(node) def convert_aten___getitem__(self, node: torch._C.Node): input_container, index = tuple( self.get_fx_value_by_ir_value(input) for input in node.inputs() ) fx_node = self.fx_graph.call_function( operator.getitem, (input_container, index) ) output_name = node.output().debugName() self.name_to_node[output_name] = fx_node def convert_aten_to(self, node: torch._C.Node): target = get_op_overload(node) args, _kwargs = self.get_args_kwargs(node, target._schema) # special handle aten.to.dtype and aten.to.prim_dtype followed by inplace_mutation_op # coz aten.to + inplace_mutation_op pattern would trigger # "cannot mutate tensors with frozen storage" functionalization error. # To work around the issue, we override the copy to be True, so that the output # is for sure not an alias of input if target == torch.ops.aten.to.dtype or target == torch.ops.aten.to.prim_dtype: user_nodes = [use.user for use in node.output().uses()] user_targets = [ get_op_overload(user_node) for user_node in user_nodes if user_node.schema() != "(no schema)" ] has_mutable_target = any( target._schema.is_mutable for target in user_targets ) if has_mutable_target: assert len(args) >= 4 new_args = list(args) new_args[3] = True # copy, override to True fx_node = self.fx_graph.call_function( torch.ops.aten.to.dtype, tuple(new_args) ) # temp hack to work around the issue https://github.com/pytorch/pytorch/issues/131679 # When this issue is fixed, the clone node would be no longer needed clone_node = self.fx_graph.call_function( torch.ops.aten.clone.default, (fx_node,) ) output_name = node.output().debugName() self.name_to_node[output_name] = clone_node return self.convert_call_function_op(node) def convert_aten_add(self, node: torch._C.Node): if node.schema() == "(no schema)": if isinstance(node.inputsAt(0).type(), torch.ListType) and isinstance( node.inputsAt(1).type(), torch.ListType ): target = torch.ops.aten.add.t else: raise RuntimeError(f"unable to determind the target for {node}") else: target = get_op_overload(node) if target == torch.ops.aten.add.t: # special handle python list/tuple add: "aten::add.t(t[] a, t[] b) -> t[]" for # RuntimeError: aten::add() Expected a value of type 'List[t]' for argument 'a' but instead found type 'immutable_list'. args, _kwargs = self.get_args_kwargs(node, target._schema) output_name = node.output().debugName() self.name_to_node[output_name] = self.fx_graph.call_function(list_add, args) else: self.convert_call_function_op(node) def _check_prim_loop_support(self, node): inputs = list(node.inputs()) # TODO: (1/N) stage. if inputs[0].debugName() not in self.name_to_constant: raise RuntimeError( "prim::Loop currently cannot run with dynamic value of number of iterations." ) # Make sure the condition is not updated in the subblock. subblock = next(node.blocks()) condition_output_name = next(subblock.outputs()).debugName() for node in subblock.nodes(): if ( node.outputsSize() == 1 and node.output().debugName() == condition_output_name ): raise RuntimeError( "prim::Loop currently cannot run with dynamic value of condition." ) if node.outputsSize() >= 2: for outp in node.outputs(): if outp.debugName() == condition_output_name: raise RuntimeError( "prim::Loop currently cannot run with dynamic value of condition." ) def convert_prim_Loop(self, node: torch._C.Node): inputs = list(node.inputs()) self._check_prim_loop_support(node) num_iterations = self.get_fx_value_by_ir_value(inputs[0]) # Find inputs. loop_local_arguments = [inp.debugName() for inp in inputs[2:]] global_arguments = self._identify_inputs_as_arguments(node) # Lift parameters as inputs. for block in node.blocks(): global_arguments = global_arguments.union( self.blocks_to_lifted_attrs[block] ) global_arguments = list(global_arguments) subgraph_nodes, subgraph_converters = self._convert_block_to_subgraph( node, global_arguments ) assert len(subgraph_nodes) == 1 subgraph_converter = subgraph_converters[0] if not self.is_top_level_graph(): self.name_update_from_subblock_to_parent = ( self.name_update_from_subblock_to_parent.union( subgraph_converter.name_update_from_subblock_to_parent ) ) fx_block_args = [ self.get_fx_value_by_fqn(name) for name in loop_local_arguments + global_arguments ] for iter_idx in range(num_iterations): loop_node = self.fx_graph.call_function( execute_subgraph_from_prim_loop, # Check execute_node function for the expected arguments order. ( subgraph_nodes[0], iter_idx, len(loop_local_arguments), *fx_block_args, ), {}, ) # Update the value of loop local variables. if node.outputsSize() >= 1: for i, outp in enumerate(node.outputs()): output_name = outp.debugName() self.name_to_node[output_name] = self.fx_graph.call_function( operator.getitem, ( loop_node, i + 1, ), # + 1 because the 0th element is the condition. ) fx_block_args[i] = self.name_to_node[output_name] # Update the value of global variables, whose values are modified inplace. for i, name in enumerate( subgraph_converter.name_update_from_subblock_to_parent ): self.name_to_node[name] = self.fx_graph.call_function( operator.getitem, ( loop_node, i + node.outputsSize() + 1, ), # + 1 because the 0th element is the condition. ) global_argument_index = global_arguments.index(name) fx_block_args[ i + node.outputsSize() + global_argument_index ] = self.name_to_node[name] def _check_set_attr_in_if_block(self, if_node: torch._C.Node): for block in if_node.blocks(): for node in block.nodes(): if node.kind() == "prim::SetAttr": raise RuntimeError( "During converting prim::If to torch.cond, found prim::SetAttr op" " which is not supported yet. Please file an issue if you come " "across this error." ) def convert_prim_If(self, node: torch._C.Node): self._check_set_attr_in_if_block(node) inputs = list(node.inputs()) assert len(inputs) == 1 predicate = self.get_fx_value_by_ir_value(inputs[0]) # Find inputs. arguments = self._identify_inputs_as_arguments(node) # Lift parameters as inputs. for block in node.blocks(): arguments = arguments.union(self.blocks_to_lifted_attrs[block]) arguments = list(arguments) subgraph_nodes, _ = self._convert_block_to_subgraph(node, arguments) assert len(subgraph_nodes) == 2 fx_block_args = [self.get_fx_value_by_fqn(name) for name in arguments] args = ( predicate, subgraph_nodes[0], subgraph_nodes[1], tuple(fx_block_args), ) cond_node = self.fx_graph.call_function(torch.cond, args, {}) # prim::If can also have zero output. if node.outputsSize() == 1: output_name = node.output().debugName() self.name_to_node[output_name] = cond_node elif node.outputsSize() > 1: for i, output in enumerate(node.outputs()): output_name = output.debugName() getitem = self.fx_graph.call_function(operator.getitem, (cond_node, i)) self.name_to_node[output_name] = getitem def convert_aten_Bool(self, node: torch._C.Node): self._convert_as_noop(node) def convert_prim_Enter(self, node: torch._C.Node): # export generally treats prim::Enter as noop # The only context manager export supports is aten::enable_grad. # Unfortunately, TorchScript does not support aten::enable_grad yet. # TODO: support aten::enable_grad in both TorchScript and Converter. return def convert_prim_Exit(self, node: torch._C.Node): # export treats prim::Exit as noop return def _convert_as_noop(self, node: torch._C.Node): # Converts the node as a no-op by mapping its output node as arg[0] target = get_op_overload(node) schema = target._schema args, _kwargs = self.get_args_kwargs(node, schema) output_name = node.output().debugName() self.name_to_node[output_name] = args[0] def convert_profiler__record_function_exit(self, node: torch._C.Node): # _record_function_exit has side effect so we keep it in fx.graph # currently, _record_function_enter_new and _record_function_exit are # discarded during `retrace_as_exported_program`. target = torch.ops.profiler._record_function_exit args = tuple(self.get_fx_value_by_ir_value(input) for input in node.inputs()) self.fx_graph.call_function(target, args) def convert_prim_tolist(self, node: torch._C.Node): # prim::tolist cannot be supported by `_convert_standard_operators` # since it requires call_method instead of call_function. target = "tolist" args = (self.get_fx_value_by_ir_value(next(node.inputs())),) fx_node = self.fx_graph.call_method(target, args) output_name = node.output().debugName() self.name_to_node[output_name] = fx_node def convert_prim_Uninitialized(self, node: torch._C.Node): # `prim::Uninitialized` is inserted by the compiler when it can prove # the value will never be used. It can be introduced by exceptions, # breaks, continues, and returns. # So we add a dummy constant to the graph. output_name = node.output().debugName() self.name_to_constant[output_name] = torch.Tensor() def _convert_standard_operators(self, node: torch._C.Node): target = kind_to_standard_operators[node.kind()] args = tuple(self.get_fx_value_by_ir_value(input) for input in node.inputs()) fx_node = self.fx_graph.call_function(target, args) output_name = node.output().debugName() self.name_to_node[output_name] = fx_node def convert_node(self, node: torch._C.Node): node_kind = node.kind() # Get handler based on namespace and operator name. # Provide a default node handler as well in case we don't find # matching converter for that. handler_func_name = ir_name_to_func_name(node_kind) handler_func = getattr(self, handler_func_name, self.convert_call_function_op) # str calls print function implemented in CPP. To avoid repeating # the entire logic here, we simply keep first line from node string (getting rid # of sub-blocks IR prints). node_str = "".join(str(node).split("\n")[:1]) log.debug("[%s] converts [%s]", handler_func.__name__, node_str) try: handler_func(node) except Exception as e: raise RuntimeError(f"TS2EPConverter failed for node {node_kind}") from e def convert_graph_outputs(self): args = [] outp_name_list = [outp.debugName() for outp in self.ts_graph.outputs()] + list( self.name_update_from_subblock_to_parent ) for output_name in outp_name_list: if output_name in self.name_to_node: fx_node = self.name_to_node[output_name] # TODO: Revisit this later after HigherOrderOp design changes. # Currently, we cannot directly return input as output. if ( not self.is_top_level_graph() and isinstance(fx_node, torch.fx.Node) and fx_node.op == "placeholder" ): fx_node = self.fx_graph.call_function(torch.clone, (fx_node,)) args.append(fx_node) self.output_specs.append( OutputSpec( OutputKind.USER_OUTPUT, arg=TensorArgument(name=output_name), target=output_name, ) ) elif output_name in self.name_to_constant: args.append(self.name_to_constant[output_name]) self.output_specs.append( OutputSpec( OutputKind.USER_OUTPUT, arg=ConstantArgument( name=output_name, value=self.name_to_constant[output_name] ), target=output_name, ) ) else: raise ValueError(f"Output {output_name} not found") if len(args) == 0: # Sub-block of prim::If can have zero output. self.fx_graph.output([]) elif len(args) == 1: self.fx_graph.output( args[0] ) # Get rid of an extra list wrapped around final output. elif len(args) > 1: self.fx_graph.output( args ) # For prim::Loop and prim::If with multiple outputs. else: # Sub-block of prim::Loop can have multiple outputs. self.fx_graph.output(args) class ExplainTS2FXGraphConverter(TS2FXGraphConverter): """ Run TS2FXGraphConverter in an explain mode. It collects all failed operators conversions and provide that information to users. In order to collect all failed conversions, it also mocks some internal attributes (e.g., name_to_node). """ class _DictMock(dict): def __init__(self, dict_data, mock_value): super().__init__(dict_data) self.mock_value = mock_value def __getitem__(self, key): # If the original dictionary has the key, return its value. # Otherwise, return the mock value. if not super().__contains__(key): return self.mock_value return super().__getitem__(key) def __contains__(self, key): return True def __init__( self, ts_graph: Union[torch._C.Graph, torch._C.Block], name_to_param: dict[str, torch.Tensor], name_to_buffer: dict[str, torch.Tensor], blocks_to_lifted_attrs: dict[torch._C.Block, set[str]], name_to_non_tensor_attribute: dict[str, Any], name_to_constant: dict[str, Any], name_to_attribute_fqn: dict[str, str], ): super().__init__( ts_graph, name_to_param, name_to_buffer, blocks_to_lifted_attrs, name_to_non_tensor_attribute, name_to_constant, name_to_attribute_fqn, ) # Data to keep track of unsupported nodes. self.unsupported_node_list: list[torch._C.Node] = [] # Add mock to needed attributes. self.name_to_node = ExplainTS2FXGraphConverter._DictMock( self.name_to_node, # Dummy node. torch.fx.Node( None, # type: ignore[arg-type] "mock", "call_function", lambda: None, (), {}, ), ) def explain(self): self.convert_graph_inputs() for node in self.ts_graph.nodes(): self.convert_node(node) self.convert_graph_outputs() def convert_node(self, node): try: super().convert_node(node) except Exception: self.unsupported_node_list.append(node) @contextmanager def disable_logging(log): disabled = log.disabled log.disabled = True try: yield finally: log.disabled = disabled class TS2EPConverter: # TorchScript model to ExportedProgram converter def __init__( self, ts_model: Union[torch.jit.ScriptModule, torch.jit.ScriptFunction], sample_args: tuple[Any, ...], sample_kwargs: Optional[dict[str, Any]] = None, ): self.ts_model = ts_model self.ts_graph, self.params, _, _ = _create_jit_graph(ts_model, sample_args) self.sample_args = sample_args self.sample_kwargs = sample_kwargs self.name_to_param: dict[str, torch.Tensor] = {} self.name_to_buffer: dict[str, torch.Tensor] = {} param_list = ( list(self.ts_model.parameters()) if not isinstance(self.ts_model, torch._C.ScriptFunction) else [] ) if not isinstance(self.ts_model, torch._C.ScriptFunction): for k, tensor in self.ts_model.state_dict().items(): # type: ignore[union-attr] # Check if tensor belongs to any parameter. if any( (tensor == param).all() for param in param_list if tensor.shape == param.shape ): self.name_to_param[k] = tensor else: self.name_to_buffer[k] = tensor self.name_to_non_tensor_attributes: dict[str, Any] = {} self.name_to_constant: dict[str, Any] = {} self.lift_get_attr() def convert(self) -> ExportedProgram: log.info( """ TS2EPConverter logging starts from here. INFO: (TORCH_LOGS="export" ) * Log TorchScript IR. DEBUG: (TORCH_LOGS="+export" ), additionally * Log conversion IR by IR in a format of [] converts []. """ ) log.info("TorchScript graph\n\n%s\n", self.ts_graph) blocks_to_lifted_attrs, name_to_attribute_fqn = get_block_to_lifted_attrs( self.ts_graph ) graph_converter = TS2FXGraphConverter( self.ts_graph, self.name_to_param, self.name_to_buffer, blocks_to_lifted_attrs, self.name_to_non_tensor_attributes, self.name_to_constant, name_to_attribute_fqn, ) gm = graph_converter.convert() # Post-proccessing step to deal with quantized operators. replace_quantized_ops_with_standard_ops(gm) log.info("GraphModule: %s", gm.print_readable(print_output=False)) ep = self.retrace_as_exported_program( gm, graph_converter.name_to_constant, ) log.info("%s", ep) # Post-processing step to ensure ExportedProgram has the same state_dict as # the original TorchScript model. Throw warnings for additionally populated # state_dict entries. if not isinstance(self.ts_model, torch._C.ScriptFunction): for k, tensor in self.ts_model.state_dict().items(): # type: ignore[union-attr] if k not in ep.state_dict: warnings.warn( f"Manually populate {k} into state_dict ExportedProgram, but it is never used by the ExportedProgram." ) ep.state_dict[k] = tensor return ep @disable_logging(log) def explain(self, print_output=True): blocks_to_lifted_attrs, name_to_attribute_fqn = get_block_to_lifted_attrs( self.ts_graph ) graph_converter = ExplainTS2FXGraphConverter( self.ts_graph, self.name_to_param, self.name_to_buffer, blocks_to_lifted_attrs, self.name_to_non_tensor_attributes, self.name_to_constant, name_to_attribute_fqn, ) graph_converter.explain() if len(graph_converter.unsupported_node_list) > 0: explain_str = "Unsupported nodes are found in the following list:" for i, n in enumerate(graph_converter.unsupported_node_list): node_str = "".join(str(n).split("\n")[:1]) explain_str += f"\n\n {i}. {n.kind()} [{node_str}]" else: explain_str = "Success!" if print_output: print(explain_str) return explain_str def retrace_as_exported_program( self, gm: torch.fx.GraphModule, name_to_constant: dict[str, Any], ): dynamic_shapes = _tree_map_with_path( lambda path, x: ( [Dim.AUTO] * x.dim() if isinstance(x, torch.Tensor) else None # type: ignore[attr-defined] ), self.sample_args, ) # TODO: adjust input orders to match GraphSignature convention ep = torch.export._trace._export( gm, self.sample_args, dynamic_shapes=dynamic_shapes, strict=False, pre_dispatch=True, ) # Post-processing to make sure the ExportedProgram states are correct. # Because during conversion, we set tensor constants as GetAttr, # retracing cannot recognize them as tensor constants but instead # treat them as buffers. We need to set them again here. ep._constants.update( { k: v for k, v in name_to_constant.items() if isinstance(v, (torch.Tensor, torch.ScriptObject)) } ) for k in name_to_constant: ep.state_dict.pop(k, None) for spec in ep.graph_signature.input_specs: # Mark as constant tensors for erroneously traced buffers. if spec.kind == InputKind.BUFFER and spec.target in name_to_constant: assert isinstance( name_to_constant[spec.target], torch.Tensor ), f"{type(name_to_constant[spec.target])} has been erroneously marked as buffer" spec.kind = InputKind.CONSTANT_TENSOR ep.verifier().check(ep) return ep def lift_get_attr(self): # This function lifts multiple data types. # 1. Tensor constants attributes (e.g., self.data = torch.tensor([2,3])) # to buffers. Currently, when there are tensor constants, export # would error and ask users to register tensor constants as buffers. # Since it is hard to manually do so for TorchScript models # (e.g., source code is missing), this function automatically # lifts tensor constants to be buffers. # 2. ScriptObbject to constant. It will then be converted to getattr in # in the fx graph. # # This function should happen in TS2EPConverter instead of # TS2FXGraphConverter since it gets attributes from self.ts_model # which is not accessable in TS2FXGraphConverter. It is similar to where # we collect self.name_to_param and self.name_to_buffer. name_to_attribute_fqn: dict[str, str] = {} def get_attr(fqn: str): name = fqn.split(".") v = self.ts_model for n in name: v = getattr(v, n) return v def get_fqn(node: torch._C.Node): attr_name = node.s("name") input_name = node.input().debugName() root_attr_name = name_to_attribute_fqn[input_name] attr_fqn = f"{root_attr_name}.{attr_name}" if root_attr_name else attr_name return attr_fqn def _dfs_get_attr(block): for node in block.nodes(): if node.kind() == "prim::CreateObject": output_name = node.output().debugName() name_to_attribute_fqn[output_name] = "" if node.kind() == "prim::GetAttr": attr_fqn = get_fqn(node) value = get_attr(attr_fqn) output_name = node.output().debugName() name_to_attribute_fqn[output_name] = attr_fqn if isinstance(value, torch.Tensor): if attr_fqn not in self.name_to_buffer: # Lift tensor constants to be a buffer self.name_to_buffer[attr_fqn] = value elif isinstance(value, torch.ScriptObject): if attr_fqn not in self.name_to_constant: self.name_to_constant[attr_fqn] = value else: self.name_to_non_tensor_attributes[attr_fqn] = value for subblock in node.blocks(): _dfs_get_attr(subblock) _dfs_get_attr(self.ts_graph)