# Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import torch import torch.nn.functional as F from ..utils.import_utils import is_torch_npu_available if is_torch_npu_available(): import math import torch_npu from einops import rearrange, repeat from torch_npu import npu_rotary_mul # FlashAttention2 is supported on Ascend NPU with down-right aligned causal mask by default. # Set environment variable `NPU_FA2_SPARSE_MODE` to 2 when using top-left aligned causal mask. TOP_LEFT_ALIGNED_CAUSAL_MASK_MODE = 2 DOWN_RIGHT_ALIGNED_CAUSAL_MASK_MODE = 3 SPARSE_MODE = int(os.getenv("NPU_FA2_SPARSE_MODE", default=DOWN_RIGHT_ALIGNED_CAUSAL_MASK_MODE)) if SPARSE_MODE not in [TOP_LEFT_ALIGNED_CAUSAL_MASK_MODE, DOWN_RIGHT_ALIGNED_CAUSAL_MASK_MODE]: raise ValueError( "Environment variable `NPU_FA2_SPARSE_MODE` can only be set as 2 (top-left aligned causal mask) " "or 3 (down-right aligned causal mask)." ) ATTN_MASK_NPU_CACHE = {} def get_attn_mask_npu(device): """Get or create attention mask for the specified device.""" if device not in ATTN_MASK_NPU_CACHE: ATTN_MASK_NPU_CACHE[device] = torch.triu(torch.ones([2048, 2048], device=device), diagonal=1).bool() return ATTN_MASK_NPU_CACHE[device] def is_npu_fa2_top_left_aligned_causal_mask(): return SPARSE_MODE == TOP_LEFT_ALIGNED_CAUSAL_MASK_MODE if is_torch_npu_available() else False # Copied from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/bert_padding.py class IndexFirstAxis(torch.autograd.Function): @staticmethod def forward(ctx, input, indices): ctx.save_for_backward(indices) assert input.ndim >= 2 ctx.first_axis_dim, other_shape = input.shape[0], input.shape[1:] second_dim = other_shape.numel() # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. # return input[indices] return torch.gather( rearrange(input, "b ... -> b (...)"), 0, repeat(indices, "z -> z d", d=second_dim) ).reshape(-1, *other_shape) @staticmethod def backward(ctx, grad_output): (indices,) = ctx.saved_tensors assert grad_output.ndim >= 2 other_shape = grad_output.shape[1:] grad_output = rearrange(grad_output, "b ... -> b (...)") grad_input = torch.zeros( [ctx.first_axis_dim, grad_output.shape[1]], device=grad_output.device, dtype=grad_output.dtype, ) # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing. # grad_input[indices] = grad_output grad_input.scatter_(0, repeat(indices, "z -> z d", d=grad_output.shape[1]), grad_output) return grad_input.reshape(ctx.first_axis_dim, *other_shape), None index_first_axis = IndexFirstAxis.apply # Copied from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/bert_padding.py class IndexPutFirstAxis(torch.autograd.Function): @staticmethod def forward(ctx, values, indices, first_axis_dim): ctx.save_for_backward(indices) assert indices.ndim == 1 assert values.ndim >= 2 output = torch.zeros(first_axis_dim, *values.shape[1:], device=values.device, dtype=values.dtype) # TD [2022-03-04] For some reason torch.scatter is a bit faster than indexing. output[indices] = values # output.scatter_(0, repeat(indices, 'z -> z d', d=values.shape[1]), values) return output @staticmethod def backward(ctx, grad_output): (indices,) = ctx.saved_tensors # TD [2022-03-04] For some reason torch.gather is a bit faster than indexing. grad_values = grad_output[indices] # grad_values = torch.gather(grad_output, 0, repeat(indices, 'z -> z d', d=grad_output.shape[1])) return grad_values, None, None index_put_first_axis = IndexPutFirstAxis.apply # Copied from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/bert_padding.py def pad_input(hidden_states, indices, batch, seqlen): """ Arguments: hidden_states: (total_nnz, ...), where total_nnz = number of tokens in selected in attention_mask. indices: (total_nnz), the indices that represent the non-masked tokens of the original padded input sequence. batch: int, batch size for the padded sequence. seqlen: int, maximum sequence length for the padded sequence. Return: hidden_states: (batch, seqlen, ...) """ # dim = hidden_states.shape[-1] # output = torch.zeros((batch * seqlen), dim, device=hidden_states.device, dtype=hidden_states.dtype) # output[indices] = hidden_states output = index_put_first_axis(hidden_states, indices, batch * seqlen) return rearrange(output, "(b s) ... -> b s ...", b=batch) # Copied from https://github.com/Dao-AILab/flash-attention/blob/main/flash_attn/bert_padding.py def unpad_input(hidden_states, attention_mask, unused_mask=None): """ Arguments: hidden_states: (batch, seqlen, ...) attention_mask: (batch, seqlen), bool / int, 1 means valid and 0 means not valid. unused_mask: (batch, seqlen), bool / int, 1 means the element is allocated but unused. Return: hidden_states: (total_nnz, ...), where total_nnz = number of tokens selected in attention_mask + unused_mask. indices: (total_nnz), the indices of masked tokens from the flattened input sequence. cu_seqlens: (batch + 1), the cumulative sequence lengths, used to index into hidden_states. max_seqlen_in_batch: int seqused: (batch), returns the number of tokens selected in attention_mask + unused_mask. """ all_masks = (attention_mask + unused_mask) if unused_mask is not None else attention_mask seqlens_in_batch = all_masks.sum(dim=-1, dtype=torch.int32) used_seqlens_in_batch = attention_mask.sum(dim=-1, dtype=torch.int32) indices = torch.nonzero(all_masks.flatten(), as_tuple=False).flatten() max_seqlen_in_batch = seqlens_in_batch.max().item() cu_seqlens = F.pad(torch.cumsum(seqlens_in_batch, dim=0, dtype=torch.int32), (1, 0)) # TD [2022-03-04] We don't want to index with a bool mask, because Pytorch will expand the # bool mask, then call nonzero to get the indices, then index with those. The indices is @dim # times larger than it needs to be, wasting memory. It's faster and more memory-efficient to # index with integer indices. Moreover, torch's index is a bit slower than it needs to be, # so we write custom forward and backward to make it a bit faster. return ( index_first_axis(rearrange(hidden_states, "b s ... -> (b s) ..."), indices), indices, cu_seqlens, max_seqlen_in_batch, used_seqlens_in_batch, ) def npu_flash_attn_func( q, k, v, dropout_p=0.0, softmax_scale=None, causal=False, **kwargs, ): keep_prob = 1.0 - dropout_p if softmax_scale is None: softmax_scale = 1.0 / math.sqrt(q.shape[-1]) if not causal: head_num = q.shape[2] output = torch_npu.npu_fusion_attention(q, k, v, head_num, "BSND", keep_prob=keep_prob, scale=softmax_scale)[0] else: attn_mask_npu = get_attn_mask_npu(q.device) head_num = q.shape[2] output = torch_npu.npu_fusion_attention( q, k, v, head_num, "BSND", keep_prob=keep_prob, scale=softmax_scale, atten_mask=attn_mask_npu, sparse_mode=SPARSE_MODE, )[0] return output def npu_flash_attn_varlen_func( q, k, v, cu_seqlens_q, cu_seqlens_k, max_seqlen_q=None, # defined for aligning params order with corresponding function in `flash-attn` max_seqlen_k=None, # defined for aligning params order with corresponding function in `flash-attn` dropout_p=0.0, softmax_scale=None, causal=False, **kwargs, ): keep_prob = 1.0 - dropout_p if softmax_scale is None: softmax_scale = 1.0 / math.sqrt(q.shape[-1]) if not causal: head_num = q.shape[1] output = torch_npu.npu_fusion_attention( q, k, v, head_num, pse=None, atten_mask=None, scale=softmax_scale, keep_prob=keep_prob, input_layout="TND", actual_seq_qlen=tuple(cu_seqlens_q[1:].cpu().numpy().tolist()), actual_seq_kvlen=tuple(cu_seqlens_k[1:].cpu().numpy().tolist()), )[0] else: attn_mask_npu = get_attn_mask_npu(q.device) head_num = q.shape[1] output = torch_npu.npu_fusion_attention( q, k, v, head_num, pse=None, padding_mask=None, atten_mask=attn_mask_npu, scale=softmax_scale, keep_prob=keep_prob, input_layout="TND", actual_seq_qlen=tuple(cu_seqlens_q[1:].cpu().numpy().tolist()), actual_seq_kvlen=tuple(cu_seqlens_k[1:].cpu().numpy().tolist()), sparse_mode=SPARSE_MODE, )[0] return output def npu_apply_rotary_emb(x, cos, sin, **kwargs): # cos tensor after chunk should be repeated through chunked dimension to original shape on Ascend NPU if len(cos.shape) == 2 and cos.shape[-1] == x.shape[-1] // 2: cos = cos.repeat(1, 2) # cos tensor with [S,D] shape should be unsqueezed to 4-d tensor with shape [1,S,1,D] cos = cos.unsqueeze(0).unsqueeze(2) # sin tensor after chunk should be repeated through chunked dimension to original shape on Ascend NPU if len(sin.shape) == 2 and sin.shape[-1] == x.shape[-1] // 2: sin = sin.repeat(1, 2) # sin tensor with [S,D] shape should be unsqueezed to 4-d tensor with shape [1,S,1,D] sin = sin.unsqueeze(0).unsqueeze(2) return npu_rotary_mul(x, cos, sin)