# Copyright 2024 The HuggingFace Team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. "SpQR (Sparse-Quantized Representation) integration file" from ..utils import is_accelerate_available, is_spqr_available, is_torch_available if is_torch_available(): import torch.nn as nn def replace_with_spqr_linear( model, quantization_config=None, modules_to_not_convert=None, current_key_name=None, has_been_replaced=False, ): """ Public method that recursively replaces the Linear layers of the given model with SpQR quantized layers. `accelerate` is needed to use this method. Returns the converted model and a boolean that indicates if the conversion has been successful or not. Args: model (`torch.nn.Module`): The model to convert, can be any `torch.nn.Module` instance. quantization_config (`SpQRConfig`): The quantization config object that contains the quantization parameters. modules_to_not_convert (`list[str]`, *optional*): A list of nn.Linear weights to not convert. If a parameter path is in the list (e.g. `lm_head.weight`), the corresponding module will not be converted. current_key_name (`list`, *optional*): A list that contains the current key name. This is used for recursion and should not be passed by the user. has_been_replaced (`bool`, *optional*): A boolean that indicates if the conversion has been successful or not. This is used for recursion and should not be passed by the user. """ if modules_to_not_convert is None: modules_to_not_convert = [] if is_accelerate_available(): from accelerate import init_empty_weights if is_spqr_available(): from spqr_quant import QuantizedLinear for name, module in model.named_children(): if current_key_name is None: current_key_name = [] current_key_name.append(name) if isinstance(module, nn.Linear): # Check if the current key is not in the `modules_to_not_convert` if ".".join(current_key_name) + ".weight" not in modules_to_not_convert: with init_empty_weights(): tensor_name = ".".join(current_key_name) shapes = quantization_config.shapes shapes_keys = shapes.keys() shapes_valid = ( f"{tensor_name}.dense_weights.shape" in shapes_keys and f"{tensor_name}.row_offsets.shape" in shapes_keys and f"{tensor_name}.col_vals.shape" in shapes_keys and f"{tensor_name}.in_perm.shape" in shapes_keys ) if not shapes_valid: raise ValueError( f"The SpQR quantization config does not contain the shape " f"configuration for {tensor_name}. This indicates that the " f"configuration is either invalid or corrupted." ) dense_weights_shape = shapes[f"{tensor_name}.dense_weights.shape"] row_offsets_shape = shapes[f"{tensor_name}.row_offsets.shape"] col_vals_shape = shapes[f"{tensor_name}.col_vals.shape"] in_perm_shape = shapes[f"{tensor_name}.in_perm.shape"] in_features = module.in_features out_features = module.out_features model._modules[name] = QuantizedLinear.create_placehodler( rows=out_features, cols=in_features, bits=quantization_config.bits, beta1=quantization_config.beta1, beta2=quantization_config.beta2, dense_weights_shape=dense_weights_shape, row_offsets_shape=row_offsets_shape, col_vals_shape=col_vals_shape, in_perm_shape=in_perm_shape, ) has_been_replaced = True # Store the module class in case we need to transpose the weight later model._modules[name].source_cls = type(module) # Force requires grad to False to avoid unexpected errors model._modules[name].requires_grad_(False) else: pass if len(list(module.children())) > 0: _, has_been_replaced = replace_with_spqr_linear( module, quantization_config=quantization_config, modules_to_not_convert=modules_to_not_convert, current_key_name=current_key_name, has_been_replaced=has_been_replaced, ) # Remove the last key for recursion current_key_name.pop(-1) return model, has_been_replaced