from typing import Callable, Optional import torch from torch import nn from transformers.utils.generic import check_model_inputs from ...cache_utils import Cache, DynamicCache from ...masking_utils import create_causal_mask, create_sliding_window_causal_mask from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...modeling_layers import ( GenericForQuestionAnswering, ) from ...modeling_outputs import BaseModelOutputWithPast from ...modeling_utils import ALL_ATTENTION_FUNCTIONS from ...processing_utils import Unpack from ...utils import TransformersKwargs, auto_docstring, logging from ..llama.modeling_llama import ( LlamaAttention, LlamaDecoderLayer, LlamaForCausalLM, LlamaForSequenceClassification, LlamaForTokenClassification, LlamaMLP, LlamaModel, LlamaPreTrainedModel, apply_rotary_pos_emb, eager_attention_forward, ) from .configuration_mistral import MistralConfig logger = logging.get_logger(__name__) class MistralMLP(LlamaMLP): def __init__(self, config): super().__init__(config) self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=False) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=False) class MistralAttention(LlamaAttention): def __init__(self, config: MistralConfig, layer_idx: int): super().__init__() self.head_dim = getattr(config, "head_dim", None) or config.hidden_size // config.num_attention_heads self.q_proj = nn.Linear(config.hidden_size, config.num_attention_heads * self.head_dim, bias=False) self.k_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.v_proj = nn.Linear(config.hidden_size, config.num_key_value_heads * self.head_dim, bias=False) self.o_proj = nn.Linear(config.num_attention_heads * self.head_dim, config.hidden_size, bias=False) def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> tuple[torch.Tensor, Optional[torch.Tensor], Optional[tuple[torch.Tensor]]]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, sliding_window=getattr(self.config, "sliding_window", None), # main diff with Llama **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class MistralDecoderLayer(LlamaDecoderLayer): def __init__(self, config: MistralConfig, layer_idx: int): super().__init__(config, layer_idx) self.self_attn = MistralAttention(config=config, layer_idx=layer_idx) self.mlp = MistralMLP(config) class MistralPreTrainedModel(LlamaPreTrainedModel): _can_record_outputs = { "hidden_states": MistralDecoderLayer, "attentions": MistralAttention, } class MistralModel(LlamaModel): @check_model_inputs @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> BaseModelOutputWithPast: if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) mask_function = create_causal_mask if self.config.sliding_window is None else create_sliding_window_causal_mask causal_mask = mask_function( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, position_ids=position_ids, ) hidden_states = inputs_embeds position_embeddings = self.rotary_emb(hidden_states, position_ids) for decoder_layer in self.layers[: self.config.num_hidden_layers]: hidden_states = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = self.norm(hidden_states) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values if use_cache else None, ) class MistralForCausalLM(LlamaForCausalLM): pass class MistralForTokenClassification(LlamaForTokenClassification): pass class MistralForSequenceClassification(LlamaForSequenceClassification): pass class MistralForQuestionAnswering(GenericForQuestionAnswering, MistralPreTrainedModel): ... __all__ = [ "MistralForCausalLM", "MistralForQuestionAnswering", "MistralModel", "MistralPreTrainedModel", "MistralForSequenceClassification", "MistralForTokenClassification", ]