# coding=utf-8 # Copyright 2025 the HuggingFace Inc. team. All rights reserved. # Written by Orr Zohar # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union import torch import torch.utils.checkpoint from torch import nn from ...cache_utils import Cache, DynamicCache from ...modeling_flash_attention_utils import FlashAttentionKwargs from ...processing_utils import Unpack from ...utils import auto_docstring, can_return_tuple, logging from ..idefics3.configuration_idefics3 import Idefics3Config, Idefics3VisionConfig from ..idefics3.image_processing_idefics3 import Idefics3ImageProcessor from ..idefics3.image_processing_idefics3_fast import Idefics3ImageProcessorFast from ..idefics3.modeling_idefics3 import ( Idefics3BaseModelOutputWithPast, Idefics3ForConditionalGeneration, Idefics3Model, Idefics3PreTrainedModel, Idefics3VisionTransformer, ) logger = logging.get_logger(__name__) class SmolVLMVisionConfig(Idefics3VisionConfig): r""" This is the configuration class to store the configuration of a [`SmolVLMVisionModel`]. It is used to instantiate a SmolVLM vision encoder according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the SigLIP checkpoint [google/siglip-so400m-patch14-384](https://huggingface.co/google/siglip-so400m-patch14-384) used in SmolVLM [HuggingFaceTB/SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct). Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: hidden_size (`int`, *optional*, defaults to 1152): Dimensionality of the encoder layers and the pooler layer. intermediate_size (`int`, *optional*, defaults to 3072): Dimensionality of the "intermediate" (i.e., feed-forward) layer in the Transformer encoder. num_hidden_layers (`int`, *optional*, defaults to 12): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 16): Number of attention heads for each attention layer in the Transformer encoder. num_channels (`int`, *optional*, defaults to 3): Number of channels in the input images. image_size (`int`, *optional*, defaults to 224): The size (resolution) of each image. patch_size (`int`, *optional*, defaults to 32): The size (resolution) of each patch. hidden_act (`str` or `function`, *optional*, defaults to `"gelu_pytorch_tanh"`): The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`, `"relu"`, `"selu"` and `"gelu_new"` `"quick_gelu"` are supported. layer_norm_eps (`float`, *optional*, defaults to 1e-06): The epsilon used by the layer normalization layers. attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. Example: ```python >>> from transformers.models.smolvlm.modeling_smolvlm import SmolVLMVisionTransformer >>> from transformers.models.smolvlm.configuration_smolvlm import SmolVLMVisionConfig >>> # Initializing a SmolVLMVisionConfig with google/siglip-so400m-patch14-384 style configuration >>> configuration = SmolVLMVisionConfig() >>> # Initializing a SmolVLMVisionTransformer (with random weights) from the google/siglip-so400m-patch14-384 style configuration >>> model = SmolVLMVisionTransformer(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "smolvlm_vision" pass class SmolVLMPreTrainedModel(Idefics3PreTrainedModel): pass class SmolVLMVisionTransformer(Idefics3VisionTransformer): pass class SmolVLMConfig(Idefics3Config): r""" This is the configuration class to store the configuration of a [`SmolVLMModel`]. It is used to instantiate a SmolVLM model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the model of the SmolVLM [HuggingFaceTB/SmolVLM2-2.2B-Instruct](https://huggingface.co/HuggingFaceTB/SmolVLM2-2.2B-Instruct) architecture. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should cache the key/value pairs of the attention mechanism. Only relevant if `config.is_decoder=True`. image_token_id (`int`, *optional*, defaults to 128257): The id of the "image" token. tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether or not to tie the word embeddings with the token embeddings. vision_config (`IdeficsVisionConfig` or `dict`, *optional*, defaults to `IdeficsVisionConfig`): Custom vision config or dict for the vision tower text_config (`PretrainedConfig` or `dict`, *optional*, defaults to `LlamaConfig`): Custom text config or dict for the text model scale_factor (`int`, *optional*, defaults to 2): The scale factor for the image encoder. pad_token_id (`int`, *optional*, defaults to 128002): The id of the padding token. Example: ```python >>> from transformers import SmolVLMModel, SmolVLMConfig >>> # Initializing configuration >>> configuration = SmolVLMConfig() >>> # Initializing a model from the configuration >>> model = SmolVLMModel(configuration) >>> # Accessing the model configuration >>> configuration = model.config ```""" model_type = "smolvlm" pass class SmolVLMImageProcessor(Idefics3ImageProcessor): pass class SmolVLMImageProcessorFast(Idefics3ImageProcessorFast): pass class SmolVLMBaseModelOutputWithPast(Idefics3BaseModelOutputWithPast): pass class SmolVLMModel(Idefics3Model): """ A subclass of Idefics3Model. We do *not* remove or block the call to inputs_merger in forward. Instead, we override inputs_merger here with custom logic. """ def inputs_merger( self, input_ids: torch.LongTensor, inputs_embeds: torch.Tensor, image_hidden_states: torch.Tensor ): _, patch_size, _ = image_hidden_states.shape if input_ids is None: image_mask = inputs_embeds == self.get_input_embeddings()( torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device) ) image_mask = image_mask[..., 0] # slice off the hidden dim else: image_mask = input_ids == self.config.image_token_id num_image_tokens = image_mask.sum(dim=1) if not torch.all(num_image_tokens % patch_size == 0): raise ValueError("At least one sample has tokens not divisible by patch_size.") blocks_per_sample = num_image_tokens // patch_size offsets = torch.nn.functional.pad(blocks_per_sample.cumsum(dim=0), (1, 0), value=0) block_offset = offsets[:-1] row_cum = image_mask.cumsum(dim=-1) chunk_idx = (row_cum - 1) // patch_size local_idx = (row_cum - 1) % patch_size block_idx = block_offset.unsqueeze(1) + chunk_idx image_embeds = torch.zeros_like(inputs_embeds) image_embeds[image_mask] = image_hidden_states[block_idx[image_mask], local_idx[image_mask], :] merged_embeds = torch.where(image_mask.unsqueeze(-1), image_embeds, inputs_embeds) return merged_embeds def get_image_features(self, pixel_values: torch.FloatTensor, pixel_attention_mask: torch.LongTensor = None): """ Encodes images into continuous embeddings that can be forwarded to the language model. Args: pixel_values (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): The tensors corresponding to the input images. pixel_attention_mask (`torch.LongTensor`, *optional*): The attention mask indicating padded regions in the image. """ batch_size, num_images, num_channels, height, width = pixel_values.shape pixel_values = pixel_values.view(batch_size * num_images, *pixel_values.shape[2:]) # Remove padding images - padding images are full 0. nb_values_per_image = pixel_values.shape[1:].numel() real_images_inds = (pixel_values == 0.0).sum(dim=(-1, -2, -3)) != nb_values_per_image if not any(real_images_inds): # no images, leave one empty image. real_images_inds[0] = True pixel_values = pixel_values[real_images_inds].contiguous() # Handle the vision attention mask if pixel_attention_mask is None: pixel_attention_mask = torch.ones( size=[pixel_values.shape[i] for i in (0, 2, 3)], dtype=torch.bool, device=pixel_values.device, ) else: # Remove padding images from the mask pixel_attention_mask = pixel_attention_mask.view(batch_size * num_images, *pixel_attention_mask.shape[2:]) pixel_attention_mask = pixel_attention_mask[real_images_inds].contiguous() patch_size = self.config.vision_config.patch_size patches_subgrid = pixel_attention_mask.unfold(dimension=1, size=patch_size, step=patch_size) patches_subgrid = patches_subgrid.unfold(dimension=2, size=patch_size, step=patch_size) patch_attention_mask = (patches_subgrid.sum(dim=(-1, -2)) > 0).bool() # Get sequence from the vision encoder image_hidden_states = self.vision_model(pixel_values=pixel_values, patch_attention_mask=patch_attention_mask) image_hidden_states = image_hidden_states.last_hidden_state # Modality projection & resampling image_hidden_states = self.connector(image_hidden_states) return image_hidden_states @can_return_tuple @auto_docstring( custom_intro=""" Inputs fed to the model can have an arbitrary number of images. To account for this, pixel_values fed to the model have image padding -> (batch_size, max_num_images, 3, max_heights, max_widths) where max_num_images is the maximum number of images among the batch_size samples in the batch. Padding images are not needed beyond padding the pixel_values at the entrance of the model. For efficiency, we only pass through the vision_model's forward the real images by discarding the padding images i.e. pixel_values of size (image_batch_size, 3, height, width) where image_batch_size would be 7 when num_images_per_sample=[1, 3, 1, 2] and max_num_images would be 3. """ ) def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, pixel_values: Optional[torch.FloatTensor] = None, pixel_attention_mask: Optional[torch.BoolTensor] = None, image_hidden_states: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[FlashAttentionKwargs], ) -> Union[tuple, SmolVLMBaseModelOutputWithPast]: output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict if self.training and self.text_model.gradient_checkpointing and use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False # retrieve input_ids and inputs_embeds if input_ids is not None: batch_size, seq_length = input_ids.shape elif inputs_embeds is not None: batch_size, seq_length, _ = inputs_embeds.shape else: raise ValueError("You have to specify either input_ids or inputs_embeds") if use_cache and past_key_values is None: past_key_values = DynamicCache() if inputs_embeds is None: inputs_embeds = self.text_model.get_input_embeddings()(input_ids).to(input_ids.device) # START VISUAL INPUTS INTEGRATION if pixel_values is not None and image_hidden_states is not None: raise ValueError("You cannot specify both pixel_values and image_hidden_states at the same time") if pixel_values is not None: image_hidden_states = self.get_image_features(pixel_values, pixel_attention_mask).to(inputs_embeds.device) elif image_hidden_states is not None: image_hidden_states = image_hidden_states.to(dtype=self.dtype, device=inputs_embeds.device) if image_hidden_states is not None: # When we generate, we don't want to replace the potential image_token_id that we generated by images # that simply don't exist inputs_embeds = self.inputs_merger( input_ids=input_ids, inputs_embeds=inputs_embeds, image_hidden_states=image_hidden_states, ) outputs = self.text_model( inputs_embeds=inputs_embeds, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, cache_position=cache_position, **kwargs, ) return SmolVLMBaseModelOutputWithPast( last_hidden_state=outputs.last_hidden_state, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_hidden_states, ) class SmolVLMForConditionalGeneration(Idefics3ForConditionalGeneration): def __init__(self, config): super().__init__(config) self.model = SmolVLMModel(config) self.lm_head = nn.Linear(config.text_config.hidden_size, config.text_config.vocab_size, bias=False) self.post_init() def forward(self, **super_kwargs): r""" pixel_attention_mask (`torch.Tensor` of shape `(batch_size, image_size, image_size)`, *optional*): Mask to avoid performing attention on padding pixel indices. image_hidden_states (`torch.FloatTensor` of shape `(batch_size, num_channels, image_size, image_size)`): The hidden states of the image encoder after modality projection. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or `model.image_token_id`. Tokens with indices set to `model.image_token_id` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> import requests >>> import torch >>> from PIL import Image >>> from io import BytesIO >>> from transformers import AutoProcessor, AutoModelForImageTextToText >>> from transformers.image_utils import load_image >>> # Note that passing the image urls (instead of the actual pil images) to the processor is also possible >>> image1 = load_image("https://cdn.britannica.com/61/93061-050-99147DCE/Statue-of-Liberty-Island-New-York-Bay.jpg") >>> image2 = load_image("https://cdn.britannica.com/59/94459-050-DBA42467/Skyline-Chicago.jpg") >>> image3 = load_image("https://cdn.britannica.com/68/170868-050-8DDE8263/Golden-Gate-Bridge-San-Francisco.jpg") >>> processor = AutoProcessor.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct") >>> model = AutoModelForImageTextToText.from_pretrained("HuggingFaceTB/SmolVLM2-2.2B-Instruct", torch_dtype=torch.bfloat16, device_map="auto") >>> # Create inputs >>> messages = [ ... { ... "role": "user", ... "content": [ ... {"type": "video", "path": path/to/video}, ... {"type": "text", "text": "What is happening in this video?"}, ... ] ... } ... ] >>> inputs = processor.apply_chat_template([messages], add_generation_prompt=True) >>> # Generate >>> generated_ids = model.generate(**inputs, max_new_tokens=256) >>> generated_texts = processor.batch_decode(generated_ids, skip_special_tokens=True) >>> print(generated_texts) ```""" super().forward(**super_kwargs) __all__ = [ "SmolVLMVisionConfig", "SmolVLMConfig", "SmolVLMImageProcessor", "SmolVLMImageProcessorFast", "SmolVLMForConditionalGeneration", "SmolVLMPreTrainedModel", "SmolVLMModel", "SmolVLMVisionTransformer", ]