""" This module can be used to solve problems related to 2D Cables. """ from sympy.core.sympify import sympify from sympy.core.symbol import Symbol,symbols from sympy import sin, cos, pi, atan, diff, Piecewise, solve, rad from sympy.functions.elementary.miscellaneous import sqrt from sympy.solvers.solveset import linsolve from sympy.matrices import Matrix from sympy.plotting import plot class Cable: """ Cables are structures in engineering that support the applied transverse loads through the tensile resistance developed in its members. Cables are widely used in suspension bridges, tension leg offshore platforms, transmission lines, and find use in several other engineering applications. Examples ======== A cable is supported at (0, 10) and (10, 10). Two point loads acting vertically downwards act on the cable, one with magnitude 3 kN and acting 2 meters from the left support and 3 meters below it, while the other with magnitude 2 kN is 6 meters from the left support and 6 meters below it. >>> from sympy.physics.continuum_mechanics.cable import Cable >>> c = Cable(('A', 0, 10), ('B', 10, 10)) >>> c.apply_load(-1, ('P', 2, 7, 3, 270)) >>> c.apply_load(-1, ('Q', 6, 4, 2, 270)) >>> c.loads {'distributed': {}, 'point_load': {'P': [3, 270], 'Q': [2, 270]}} >>> c.loads_position {'P': [2, 7], 'Q': [6, 4]} """ def __init__(self, support_1, support_2): """ Initializes the class. Parameters ========== support_1 and support_2 are tuples of the form (label, x, y), where label : String or symbol The label of the support x : Sympifyable The x coordinate of the position of the support y : Sympifyable The y coordinate of the position of the support """ self._left_support = [] self._right_support = [] self._supports = {} self._support_labels = [] self._loads = {"distributed": {}, "point_load": {}} self._loads_position = {} self._length = 0 self._reaction_loads = {} self._tension = {} self._lowest_x_global = sympify(0) self._lowest_y_global = sympify(0) self._cable_eqn = None self._tension_func = None if support_1[0] == support_2[0]: raise ValueError("Supports can not have the same label") elif support_1[1] == support_2[1]: raise ValueError("Supports can not be at the same location") x1 = sympify(support_1[1]) y1 = sympify(support_1[2]) self._supports[support_1[0]] = [x1, y1] x2 = sympify(support_2[1]) y2 = sympify(support_2[2]) self._supports[support_2[0]] = [x2, y2] if support_1[1] < support_2[1]: self._left_support.append(x1) self._left_support.append(y1) self._right_support.append(x2) self._right_support.append(y2) self._support_labels.append(support_1[0]) self._support_labels.append(support_2[0]) else: self._left_support.append(x2) self._left_support.append(y2) self._right_support.append(x1) self._right_support.append(y1) self._support_labels.append(support_2[0]) self._support_labels.append(support_1[0]) for i in self._support_labels: self._reaction_loads[Symbol("R_"+ i +"_x")] = 0 self._reaction_loads[Symbol("R_"+ i +"_y")] = 0 @property def supports(self): """ Returns the supports of the cable along with their positions. """ return self._supports @property def left_support(self): """ Returns the position of the left support. """ return self._left_support @property def right_support(self): """ Returns the position of the right support. """ return self._right_support @property def loads(self): """ Returns the magnitude and direction of the loads acting on the cable. """ return self._loads @property def loads_position(self): """ Returns the position of the point loads acting on the cable. """ return self._loads_position @property def length(self): """ Returns the length of the cable. """ return self._length @property def reaction_loads(self): """ Returns the reaction forces at the supports, which are initialized to 0. """ return self._reaction_loads @property def tension(self): """ Returns the tension developed in the cable due to the loads applied. """ return self._tension def tension_at(self, x): """ Returns the tension at a given value of x developed due to distributed load. """ if 'distributed' not in self._tension.keys(): raise ValueError("No distributed load added or solve method not called") if x > self._right_support[0] or x < self._left_support[0]: raise ValueError("The value of x should be between the two supports") A = self._tension['distributed'] X = Symbol('X') return A.subs({X:(x-self._lowest_x_global)}) def apply_length(self, length): """ This method specifies the length of the cable Parameters ========== length : Sympifyable The length of the cable Examples ======== >>> from sympy.physics.continuum_mechanics.cable import Cable >>> c = Cable(('A', 0, 10), ('B', 10, 10)) >>> c.apply_length(20) >>> c.length 20 """ dist = ((self._left_support[0] - self._right_support[0])**2 - (self._left_support[1] - self._right_support[1])**2)**(1/2) if length < dist: raise ValueError("length should not be less than the distance between the supports") self._length = length def change_support(self, label, new_support): """ This method changes the mentioned support with a new support. Parameters ========== label: String or symbol The label of the support to be changed new_support: Tuple of the form (new_label, x, y) new_label: String or symbol The label of the new support x: Sympifyable The x-coordinate of the position of the new support. y: Sympifyable The y-coordinate of the position of the new support. Examples ======== >>> from sympy.physics.continuum_mechanics.cable import Cable >>> c = Cable(('A', 0, 10), ('B', 10, 10)) >>> c.supports {'A': [0, 10], 'B': [10, 10]} >>> c.change_support('B', ('C', 5, 6)) >>> c.supports {'A': [0, 10], 'C': [5, 6]} """ if label not in self._supports: raise ValueError("No support exists with the given label") i = self._support_labels.index(label) rem_label = self._support_labels[(i+1)%2] x1 = self._supports[rem_label][0] y1 = self._supports[rem_label][1] x = sympify(new_support[1]) y = sympify(new_support[2]) for l in self._loads_position: if l[0] >= max(x, x1) or l[0] <= min(x, x1): raise ValueError("The change in support will throw an existing load out of range") self._supports.pop(label) self._left_support.clear() self._right_support.clear() self._reaction_loads.clear() self._support_labels.remove(label) self._supports[new_support[0]] = [x, y] if x1 < x: self._left_support.append(x1) self._left_support.append(y1) self._right_support.append(x) self._right_support.append(y) self._support_labels.append(new_support[0]) else: self._left_support.append(x) self._left_support.append(y) self._right_support.append(x1) self._right_support.append(y1) self._support_labels.insert(0, new_support[0]) for i in self._support_labels: self._reaction_loads[Symbol("R_"+ i +"_x")] = 0 self._reaction_loads[Symbol("R_"+ i +"_y")] = 0 def apply_load(self, order, load): """ This method adds load to the cable. Parameters ========== order : Integer The order of the applied load. - For point loads, order = -1 - For distributed load, order = 0 load : tuple * For point loads, load is of the form (label, x, y, magnitude, direction), where: label : String or symbol The label of the load x : Sympifyable The x coordinate of the position of the load y : Sympifyable The y coordinate of the position of the load magnitude : Sympifyable The magnitude of the load. It must always be positive direction : Sympifyable The angle, in degrees, that the load vector makes with the horizontal in the counter-clockwise direction. It takes the values 0 to 360, inclusive. * For uniformly distributed load, load is of the form (label, magnitude) label : String or symbol The label of the load magnitude : Sympifyable The magnitude of the load. It must always be positive Examples ======== For a point load of magnitude 12 units inclined at 30 degrees with the horizontal: >>> from sympy.physics.continuum_mechanics.cable import Cable >>> c = Cable(('A', 0, 10), ('B', 10, 10)) >>> c.apply_load(-1, ('Z', 5, 5, 12, 30)) >>> c.loads {'distributed': {}, 'point_load': {'Z': [12, 30]}} >>> c.loads_position {'Z': [5, 5]} For a uniformly distributed load of magnitude 9 units: >>> from sympy.physics.continuum_mechanics.cable import Cable >>> c = Cable(('A', 0, 10), ('B', 10, 10)) >>> c.apply_load(0, ('X', 9)) >>> c.loads {'distributed': {'X': 9}, 'point_load': {}} """ if order == -1: if len(self._loads["distributed"]) != 0: raise ValueError("Distributed load already exists") label = load[0] if label in self._loads["point_load"]: raise ValueError("Label already exists") x = sympify(load[1]) y = sympify(load[2]) if x > self._right_support[0] or x < self._left_support[0]: raise ValueError("The load should be positioned between the supports") magnitude = sympify(load[3]) direction = sympify(load[4]) self._loads["point_load"][label] = [magnitude, direction] self._loads_position[label] = [x, y] elif order == 0: if len(self._loads_position) != 0: raise ValueError("Point load(s) already exist") label = load[0] if label in self._loads["distributed"]: raise ValueError("Label already exists") magnitude = sympify(load[1]) self._loads["distributed"][label] = magnitude else: raise ValueError("Order should be either -1 or 0") def remove_loads(self, *args): """ This methods removes the specified loads. Parameters ========== This input takes multiple label(s) as input label(s): String or symbol The label(s) of the loads to be removed. Examples ======== >>> from sympy.physics.continuum_mechanics.cable import Cable >>> c = Cable(('A', 0, 10), ('B', 10, 10)) >>> c.apply_load(-1, ('Z', 5, 5, 12, 30)) >>> c.loads {'distributed': {}, 'point_load': {'Z': [12, 30]}} >>> c.remove_loads('Z') >>> c.loads {'distributed': {}, 'point_load': {}} """ for i in args: if len(self._loads_position) == 0: if i not in self._loads['distributed']: raise ValueError("Error removing load " + i + ": no such load exists") else: self._loads['disrtibuted'].pop(i) else: if i not in self._loads['point_load']: raise ValueError("Error removing load " + i + ": no such load exists") else: self._loads['point_load'].pop(i) self._loads_position.pop(i) def solve(self, *args): """ This method solves for the reaction forces at the supports, the tension developed in the cable, and updates the length of the cable. Parameters ========== This method requires no input when solving for point loads For distributed load, the x and y coordinates of the lowest point of the cable are required as x: Sympifyable The x coordinate of the lowest point y: Sympifyable The y coordinate of the lowest point Examples ======== For point loads, >>> from sympy.physics.continuum_mechanics.cable import Cable >>> c = Cable(("A", 0, 10), ("B", 10, 10)) >>> c.apply_load(-1, ('Z', 2, 7.26, 3, 270)) >>> c.apply_load(-1, ('X', 4, 6, 8, 270)) >>> c.solve() >>> c.tension {A_Z: 8.91403453669861, X_B: 19*sqrt(13)/10, Z_X: 4.79150773600774} >>> c.reaction_loads {R_A_x: -5.25547445255474, R_A_y: 7.2, R_B_x: 5.25547445255474, R_B_y: 3.8} >>> c.length 5.7560958484519 + 2*sqrt(13) For distributed load, >>> from sympy.physics.continuum_mechanics.cable import Cable >>> c=Cable(("A", 0, 40),("B", 100, 20)) >>> c.apply_load(0, ("X", 850)) >>> c.solve(58.58) >>> c.tension {'distributed': 36465.0*sqrt(0.00054335718671383*X**2 + 1)} >>> c.tension_at(0) 61717.4130533677 >>> c.reaction_loads {R_A_x: 36465.0, R_A_y: -49793.0, R_B_x: 44399.9537590861, R_B_y: 42868.2071025955} """ if len(self._loads_position) != 0: sorted_position = sorted(self._loads_position.items(), key = lambda item : item[1][0]) sorted_position.append(self._support_labels[1]) sorted_position.insert(0, self._support_labels[0]) self._tension.clear() moment_sum_from_left_support = 0 moment_sum_from_right_support = 0 F_x = 0 F_y = 0 self._length = 0 tension_func = [] x = symbols('x') for i in range(1, len(sorted_position)-1): if i == 1: self._length+=sqrt((self._left_support[0] - self._loads_position[sorted_position[i][0]][0])**2 + (self._left_support[1] - self._loads_position[sorted_position[i][0]][1])**2) else: self._length+=sqrt((self._loads_position[sorted_position[i-1][0]][0] - self._loads_position[sorted_position[i][0]][0])**2 + (self._loads_position[sorted_position[i-1][0]][1] - self._loads_position[sorted_position[i][0]][1])**2) if i == len(sorted_position)-2: self._length+=sqrt((self._right_support[0] - self._loads_position[sorted_position[i][0]][0])**2 + (self._right_support[1] - self._loads_position[sorted_position[i][0]][1])**2) moment_sum_from_left_support += self._loads['point_load'][sorted_position[i][0]][0] * cos(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180) * abs(self._left_support[1] - self._loads_position[sorted_position[i][0]][1]) moment_sum_from_left_support += self._loads['point_load'][sorted_position[i][0]][0] * sin(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180) * abs(self._left_support[0] - self._loads_position[sorted_position[i][0]][0]) F_x += self._loads['point_load'][sorted_position[i][0]][0] * cos(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180) F_y += self._loads['point_load'][sorted_position[i][0]][0] * sin(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180) label = Symbol(sorted_position[i][0]+"_"+sorted_position[i+1][0]) y2 = self._loads_position[sorted_position[i][0]][1] x2 = self._loads_position[sorted_position[i][0]][0] y1 = 0 x1 = 0 if i == len(sorted_position)-2: x1 = self._right_support[0] y1 = self._right_support[1] else: x1 = self._loads_position[sorted_position[i+1][0]][0] y1 = self._loads_position[sorted_position[i+1][0]][1] angle_with_horizontal = atan((y1 - y2)/(x1 - x2)) tension = -(moment_sum_from_left_support)/(abs(self._left_support[1] - self._loads_position[sorted_position[i][0]][1])*cos(angle_with_horizontal) + abs(self._left_support[0] - self._loads_position[sorted_position[i][0]][0])*sin(angle_with_horizontal)) self._tension[label] = tension tension_func.append((tension, x<=x1)) moment_sum_from_right_support += self._loads['point_load'][sorted_position[i][0]][0] * cos(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180) * abs(self._right_support[1] - self._loads_position[sorted_position[i][0]][1]) moment_sum_from_right_support += self._loads['point_load'][sorted_position[i][0]][0] * sin(pi * self._loads['point_load'][sorted_position[i][0]][1] / 180) * abs(self._right_support[0] - self._loads_position[sorted_position[i][0]][0]) label = Symbol(sorted_position[0][0]+"_"+sorted_position[1][0]) y2 = self._loads_position[sorted_position[1][0]][1] x2 = self._loads_position[sorted_position[1][0]][0] x1 = self._left_support[0] y1 = self._left_support[1] angle_with_horizontal = -atan((y2 - y1)/(x2 - x1)) tension = -(moment_sum_from_right_support)/(abs(self._right_support[1] - self._loads_position[sorted_position[1][0]][1])*cos(angle_with_horizontal) + abs(self._right_support[0] - self._loads_position[sorted_position[1][0]][0])*sin(angle_with_horizontal)) self._tension[label] = tension tension_func.insert(0,(tension, x<=x2)) self._tension_func = Piecewise(*tension_func) angle_with_horizontal = pi/2 - angle_with_horizontal label = self._support_labels[0] self._reaction_loads[Symbol("R_"+label+"_x")] = -sin(angle_with_horizontal) * tension F_x += -sin(angle_with_horizontal) * tension self._reaction_loads[Symbol("R_"+label+"_y")] = cos(angle_with_horizontal) * tension F_y += cos(angle_with_horizontal) * tension label = self._support_labels[1] self._reaction_loads[Symbol("R_"+label+"_x")] = -F_x self._reaction_loads[Symbol("R_"+label+"_y")] = -F_y elif len(self._loads['distributed']) != 0 : if len(args) == 0: raise ValueError("Provide the lowest point of the cable") lowest_x = sympify(args[0]) self._lowest_x_global = lowest_x a = Symbol('a', positive=True) c = Symbol('c') # augmented matrix form of linsolve M = Matrix( [[(self._left_support[0]-lowest_x)**2, 1, self._left_support[1]], [(self._right_support[0]-lowest_x)**2, 1, self._right_support[1]], ]) coefficient_solution = list(linsolve(M, (a, c))) if len(coefficient_solution) ==0 or coefficient_solution[0][0]== 0: raise ValueError("The lowest point is inconsistent with the supports") A = coefficient_solution[0][0] C = coefficient_solution[0][1] + coefficient_solution[0][0]*lowest_x**2 B = -2*coefficient_solution[0][0]*lowest_x self._lowest_y_global = coefficient_solution[0][1] lowest_y = self._lowest_y_global # y = A*x**2 + B*x + C # shifting origin to lowest point X = Symbol('X') Y = Symbol('Y') Y = A*(X + lowest_x)**2 + B*(X + lowest_x) + C - lowest_y temp_list = list(self._loads['distributed'].values()) applied_force = temp_list[0] horizontal_force_constant = (applied_force * (self._right_support[0] - lowest_x)**2) / (2 * (self._right_support[1] - lowest_y)) self._tension.clear() tangent_slope_to_curve = diff(Y, X) self._tension['distributed'] = horizontal_force_constant / (cos(atan(tangent_slope_to_curve))) label = self._support_labels[0] self._reaction_loads[Symbol("R_"+label+"_x")] = self.tension_at(self._left_support[0]) * cos(atan(tangent_slope_to_curve.subs(X, self._left_support[0] - lowest_x))) self._reaction_loads[Symbol("R_"+label+"_y")] = self.tension_at(self._left_support[0]) * sin(atan(tangent_slope_to_curve.subs(X, self._left_support[0] - lowest_x))) label = self._support_labels[1] self._reaction_loads[Symbol("R_"+label+"_x")] = self.tension_at(self._left_support[0]) * cos(atan(tangent_slope_to_curve.subs(X, self._right_support[0] - lowest_x))) self._reaction_loads[Symbol("R_"+label+"_y")] = self.tension_at(self._left_support[0]) * sin(atan(tangent_slope_to_curve.subs(X, self._right_support[0] - lowest_x))) def draw(self): """ This method is used to obtain a plot for the specified cable with its supports, shape and loads. Examples ======== For point loads, >>> from sympy.physics.continuum_mechanics.cable import Cable >>> c = Cable(("A", 0, 10), ("B", 10, 10)) >>> c.apply_load(-1, ('Z', 2, 7.26, 3, 270)) >>> c.apply_load(-1, ('X', 4, 6, 8, 270)) >>> c.solve() >>> p = c.draw() >>> p # doctest: +ELLIPSIS Plot object containing: [0]: cartesian line: Piecewise((10 - 1.37*x, x <= 2), (8.52 - 0.63*x, x <= 4), (2*x/3 + 10/3, x <= 10)) for x over (0.0, 10.0) ... >>> p.show() For uniformly distributed loads, >>> from sympy.physics.continuum_mechanics.cable import Cable >>> c=Cable(("A", 0, 40),("B", 100, 20)) >>> c.apply_load(0, ("X", 850)) >>> c.solve(58.58) >>> p = c.draw() >>> p # doctest: +ELLIPSIS Plot object containing: [0]: cartesian line: 0.0116550116550117*(x - 58.58)**2 + 0.00447086247086247 for x over (0.0, 100.0) [1]: cartesian line: -7.49552913752915 for x over (0.0, 100.0) ... >>> p.show() """ x = Symbol("x") annotations = [] support_rectangles = self._draw_supports() xy_min = min(self._left_support[0],self._lowest_y_global) xy_max = max(self._right_support[0], max(self._right_support[1],self._left_support[1])) max_diff = xy_max - xy_min if len(self._loads_position) != 0: self._cable_eqn = self._draw_cable(-1) annotations += self._draw_loads(-1) elif len(self._loads['distributed']) != 0 : self._cable_eqn = self._draw_cable(0) annotations += self._draw_loads(0) if not self._cable_eqn: raise ValueError("solve method not called and/or values provided for loads and supports not adequate") cab_plot = plot(*self._cable_eqn,(x,self._left_support[0],self._right_support[0]), xlim=(xy_min-0.5*max_diff,xy_max+0.5*max_diff), ylim=(xy_min-0.5*max_diff,xy_max+0.5*max_diff), rectangles=support_rectangles,show= False,annotations=annotations, axis=False) return cab_plot def _draw_supports(self): member_rectangles = [] xy_min = min(self._left_support[0],self._lowest_y_global) xy_max = max(self._right_support[0], max(self._right_support[1],self._left_support[1])) max_diff = xy_max - xy_min supp_width = 0.075*max_diff member_rectangles.append( { 'xy': (self._left_support[0]-supp_width,self._left_support[1]), 'width': supp_width, 'height':supp_width, 'color':'brown', 'fill': False } ) member_rectangles.append( { 'xy': (self._right_support[0],self._right_support[1]), 'width': supp_width, 'height':supp_width, 'color':'brown', 'fill': False } ) return member_rectangles def _draw_cable(self,order): xy_min = min(self._left_support[0],self._lowest_y_global) xy_max = max(self._right_support[0], max(self._right_support[1],self._left_support[1])) max_diff = xy_max - xy_min if order == -1 : x,y = symbols('x y') line_func = [] sorted_position = sorted(self._loads_position.items(), key = lambda item : item[1][0]) for i in range(len(sorted_position)): if(i==0): y = ((sorted_position[i][1][1] - self._left_support[1])*(x-self._left_support[0]))/(sorted_position[i][1][0]- self._left_support[0]) + self._left_support[1] else: y = ((sorted_position[i][1][1] - sorted_position[i-1][1][1] )*(x-sorted_position[i-1][1][0]))/(sorted_position[i][1][0]- sorted_position[i-1][1][0]) + sorted_position[i-1][1][1] line_func.append((y,x<=sorted_position[i][1][0])) y = ((sorted_position[len(sorted_position)-1][1][1] - self._right_support[1])*(x-self._right_support[0]))/(sorted_position[i][1][0]- self._right_support[0]) + self._right_support[1] line_func.append((y,x<=self._right_support[0])) return [Piecewise(*line_func)] elif order == 0: x0 = self._lowest_x_global diff_force_height = max_diff*0.075 a,c,x,y = symbols('a c x y') parabola_eqn = a*(x-x0)**2 + c - y points = [(self._left_support[0],self._left_support[1]),(self._right_support[0],self._right_support[1])] equations = [] for px, py in points: equations.append(parabola_eqn.subs({x: px, y: py})) solution = solve(equations, (a, c)) parabola_eqn = solution[a]*(x-x0)**2 + solution[c] return [parabola_eqn, self._lowest_y_global - diff_force_height] def _draw_loads(self,order): xy_min = min(self._left_support[0],self._lowest_y_global) xy_max = max(self._right_support[0], max(self._right_support[1],self._left_support[1])) max_diff = xy_max - xy_min if(order==-1): arrow_length = max_diff*0.1 force_arrows = [] for key in self._loads['point_load']: force_arrows.append( { 'text': '', 'xy':(self._loads_position[key][0]+arrow_length*cos(rad(self._loads['point_load'][key][1])),\ self._loads_position[key][1] + arrow_length*sin(rad(self._loads['point_load'][key][1]))), 'xytext': (self._loads_position[key][0],self._loads_position[key][1]), 'arrowprops': {'width': 1, 'headlength':3, 'headwidth':3 , 'facecolor': 'black', } } ) mag = self._loads['point_load'][key][0] force_arrows.append( { 'text':f'{mag}N', 'xy': (self._loads_position[key][0]+arrow_length*1.6*cos(rad(self._loads['point_load'][key][1])),\ self._loads_position[key][1] + arrow_length*1.6*sin(rad(self._loads['point_load'][key][1]))), } ) return force_arrows elif (order == 0): x = symbols('x') force_arrows = [] x_val = [self._left_support[0] + ((self._right_support[0]-self._left_support[0])/10)*i for i in range(1,10)] for i in x_val: force_arrows.append( { 'text':'', 'xytext':( i, self._cable_eqn[0].subs(x,i) ), 'xy':( i, self._cable_eqn[1].subs(x,i) ), 'arrowprops':{'width':1, 'headlength':3.5, 'headwidth':3.5, 'facecolor':'black'} } ) mag = 0 for key in self._loads['distributed']: mag += self._loads['distributed'][key] force_arrows.append( { 'text':f'{mag} N/m', 'xy':((self._left_support[0]+self._right_support[0])/2,self._lowest_y_global - max_diff*0.15) } ) return force_arrows def plot_tension(self): """ Returns the diagram/plot of the tension generated in the cable at various points. Examples ======== For point loads, >>> from sympy.physics.continuum_mechanics.cable import Cable >>> c = Cable(("A", 0, 10), ("B", 10, 10)) >>> c.apply_load(-1, ('Z', 2, 7.26, 3, 270)) >>> c.apply_load(-1, ('X', 4, 6, 8, 270)) >>> c.solve() >>> p = c.plot_tension() >>> p Plot object containing: [0]: cartesian line: Piecewise((8.91403453669861, x <= 2), (4.79150773600774, x <= 4), (19*sqrt(13)/10, x <= 10)) for x over (0.0, 10.0) >>> p.show() For uniformly distributed loads, >>> from sympy.physics.continuum_mechanics.cable import Cable >>> c=Cable(("A", 0, 40),("B", 100, 20)) >>> c.apply_load(0, ("X", 850)) >>> c.solve(58.58) >>> p = c.plot_tension() >>> p Plot object containing: [0]: cartesian line: 36465.0*sqrt(0.00054335718671383*X**2 + 1) for X over (0.0, 100.0) >>> p.show() """ if len(self._loads_position) != 0: x = symbols('x') tension_plot = plot(self._tension_func, (x,self._left_support[0],self._right_support[0]), show=False) else: X = symbols('X') tension_plot = plot(self._tension['distributed'], (X,self._left_support[0],self._right_support[0]), show=False) return tension_plot