"""Tests for solvers of systems of polynomial equations. """ from sympy.polys.domains import ZZ, QQ_I from sympy.core.numbers import (I, Integer, Rational) from sympy.core.singleton import S from sympy.core.symbol import symbols from sympy.functions.elementary.miscellaneous import sqrt from sympy.polys.domains.rationalfield import QQ from sympy.polys.polyerrors import UnsolvableFactorError from sympy.polys.polyoptions import Options from sympy.polys.polytools import Poly from sympy.polys.rootoftools import CRootOf from sympy.solvers.solvers import solve from sympy.utilities.iterables import flatten from sympy.abc import a, b, c, x, y, z from sympy.polys import PolynomialError from sympy.solvers.polysys import (solve_poly_system, solve_triangulated, solve_biquadratic, SolveFailed, solve_generic, factor_system_bool, factor_system_cond, factor_system_poly, factor_system, _factor_sets, _factor_sets_slow) from sympy.polys.polytools import parallel_poly_from_expr from sympy.testing.pytest import raises from sympy.core.relational import Eq from sympy.functions.elementary.trigonometric import sin, cos from sympy.functions.elementary.exponential import exp def test_solve_poly_system(): assert solve_poly_system([x - 1], x) == [(S.One,)] assert solve_poly_system([y - x, y - x - 1], x, y) is None assert solve_poly_system([y - x**2, y + x**2], x, y) == [(S.Zero, S.Zero)] assert solve_poly_system([2*x - 3, y*Rational(3, 2) - 2*x, z - 5*y], x, y, z) == \ [(Rational(3, 2), Integer(2), Integer(10))] assert solve_poly_system([x*y - 2*y, 2*y**2 - x**2], x, y) == \ [(0, 0), (2, -sqrt(2)), (2, sqrt(2))] assert solve_poly_system([y - x**2, y + x**2 + 1], x, y) == \ [(-I*sqrt(S.Half), Rational(-1, 2)), (I*sqrt(S.Half), Rational(-1, 2))] f_1 = x**2 + y + z - 1 f_2 = x + y**2 + z - 1 f_3 = x + y + z**2 - 1 a, b = sqrt(2) - 1, -sqrt(2) - 1 assert solve_poly_system([f_1, f_2, f_3], x, y, z) == \ [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)] solution = [(1, -1), (1, 1)] assert solve_poly_system([Poly(x**2 - y**2), Poly(x - 1)]) == solution assert solve_poly_system([x**2 - y**2, x - 1], x, y) == solution assert solve_poly_system([x**2 - y**2, x - 1]) == solution assert solve_poly_system( [x + x*y - 3, y + x*y - 4], x, y) == [(-3, -2), (1, 2)] raises(NotImplementedError, lambda: solve_poly_system([x**3 - y**3], x, y)) raises(NotImplementedError, lambda: solve_poly_system( [z, -2*x*y**2 + x + y**2*z, y**2*(-z - 4) + 2])) raises(PolynomialError, lambda: solve_poly_system([1/x], x)) raises(NotImplementedError, lambda: solve_poly_system( [x-1,], (x, y))) raises(NotImplementedError, lambda: solve_poly_system( [y-1,], (x, y))) # solve_poly_system should ideally construct solutions using # CRootOf for the following four tests assert solve_poly_system([x**5 - x + 1], [x], strict=False) == [] raises(UnsolvableFactorError, lambda: solve_poly_system( [x**5 - x + 1], [x], strict=True)) assert solve_poly_system([(x - 1)*(x**5 - x + 1), y**2 - 1], [x, y], strict=False) == [(1, -1), (1, 1)] raises(UnsolvableFactorError, lambda: solve_poly_system([(x - 1)*(x**5 - x + 1), y**2-1], [x, y], strict=True)) def test_solve_generic(): NewOption = Options((x, y), {'domain': 'ZZ'}) assert solve_generic([x**2 - 2*y**2, y**2 - y + 1], NewOption) == \ [(-sqrt(-1 - sqrt(3)*I), Rational(1, 2) - sqrt(3)*I/2), (sqrt(-1 - sqrt(3)*I), Rational(1, 2) - sqrt(3)*I/2), (-sqrt(-1 + sqrt(3)*I), Rational(1, 2) + sqrt(3)*I/2), (sqrt(-1 + sqrt(3)*I), Rational(1, 2) + sqrt(3)*I/2)] # solve_generic should ideally construct solutions using # CRootOf for the following two tests assert solve_generic( [2*x - y, (y - 1)*(y**5 - y + 1)], NewOption, strict=False) == \ [(Rational(1, 2), 1)] raises(UnsolvableFactorError, lambda: solve_generic( [2*x - y, (y - 1)*(y**5 - y + 1)], NewOption, strict=True)) def test_solve_biquadratic(): x0, y0, x1, y1, r = symbols('x0 y0 x1 y1 r') f_1 = (x - 1)**2 + (y - 1)**2 - r**2 f_2 = (x - 2)**2 + (y - 2)**2 - r**2 s = sqrt(2*r**2 - 1) a = (3 - s)/2 b = (3 + s)/2 assert solve_poly_system([f_1, f_2], x, y) == [(a, b), (b, a)] f_1 = (x - 1)**2 + (y - 2)**2 - r**2 f_2 = (x - 1)**2 + (y - 1)**2 - r**2 assert solve_poly_system([f_1, f_2], x, y) == \ [(1 - sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2)), (1 + sqrt((2*r - 1)*(2*r + 1))/2, Rational(3, 2))] query = lambda expr: expr.is_Pow and expr.exp is S.Half f_1 = (x - 1 )**2 + (y - 2)**2 - r**2 f_2 = (x - x1)**2 + (y - 1)**2 - r**2 result = solve_poly_system([f_1, f_2], x, y) assert len(result) == 2 and all(len(r) == 2 for r in result) assert all(r.count(query) == 1 for r in flatten(result)) f_1 = (x - x0)**2 + (y - y0)**2 - r**2 f_2 = (x - x1)**2 + (y - y1)**2 - r**2 result = solve_poly_system([f_1, f_2], x, y) assert len(result) == 2 and all(len(r) == 2 for r in result) assert all(len(r.find(query)) == 1 for r in flatten(result)) s1 = (x*y - y, x**2 - x) assert solve(s1) == [{x: 1}, {x: 0, y: 0}] s2 = (x*y - x, y**2 - y) assert solve(s2) == [{y: 1}, {x: 0, y: 0}] gens = (x, y) for seq in (s1, s2): (f, g), opt = parallel_poly_from_expr(seq, *gens) raises(SolveFailed, lambda: solve_biquadratic(f, g, opt)) seq = (x**2 + y**2 - 2, y**2 - 1) (f, g), opt = parallel_poly_from_expr(seq, *gens) assert solve_biquadratic(f, g, opt) == [ (-1, -1), (-1, 1), (1, -1), (1, 1)] ans = [(0, -1), (0, 1)] seq = (x**2 + y**2 - 1, y**2 - 1) (f, g), opt = parallel_poly_from_expr(seq, *gens) assert solve_biquadratic(f, g, opt) == ans seq = (x**2 + y**2 - 1, x**2 - x + y**2 - 1) (f, g), opt = parallel_poly_from_expr(seq, *gens) assert solve_biquadratic(f, g, opt) == ans def test_solve_triangulated(): f_1 = x**2 + y + z - 1 f_2 = x + y**2 + z - 1 f_3 = x + y + z**2 - 1 a, b = sqrt(2) - 1, -sqrt(2) - 1 assert solve_triangulated([f_1, f_2, f_3], x, y, z) == \ [(0, 0, 1), (0, 1, 0), (1, 0, 0)] dom = QQ.algebraic_field(sqrt(2)) assert solve_triangulated([f_1, f_2, f_3], x, y, z, domain=dom) == \ [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)] a, b = CRootOf(z**2 + 2*z - 1, 0), CRootOf(z**2 + 2*z - 1, 1) assert solve_triangulated([f_1, f_2, f_3], x, y, z, extension=True) == \ [(0, 0, 1), (0, 1, 0), (1, 0, 0), (a, a, a), (b, b, b)] def test_solve_issue_3686(): roots = solve_poly_system([((x - 5)**2/250000 + (y - Rational(5, 10))**2/250000) - 1, x], x, y) assert roots == [(0, S.Half - 15*sqrt(1111)), (0, S.Half + 15*sqrt(1111))] roots = solve_poly_system([((x - 5)**2/250000 + (y - 5.0/10)**2/250000) - 1, x], x, y) # TODO: does this really have to be so complicated?! assert len(roots) == 2 assert roots[0][0] == 0 assert roots[0][1].epsilon_eq(-499.474999374969, 1e12) assert roots[1][0] == 0 assert roots[1][1].epsilon_eq(500.474999374969, 1e12) def test_factor_system(): assert factor_system([x**2 + 2*x + 1]) == [[x + 1]] assert factor_system([x**2 + 2*x + 1, y**2 + 2*y + 1]) == [[x + 1, y + 1]] assert factor_system([x**2 + 1]) == [[x**2 + 1]] assert factor_system([]) == [[]] assert factor_system([x**2 + y**2 + 2*x*y, x**2 - 2], extension=sqrt(2)) == [ [x + y, x + sqrt(2)], [x + y, x - sqrt(2)], ] assert factor_system([x**2 + 1, y**2 + 1], gaussian=True) == [ [x + I, y + I], [x + I, y - I], [x - I, y + I], [x - I, y - I], ] assert factor_system([x**2 + 1, y**2 + 1], domain=QQ_I) == [ [x + I, y + I], [x + I, y - I], [x - I, y + I], [x - I, y - I], ] assert factor_system([0]) == [[]] assert factor_system([1]) == [] assert factor_system([0 , x]) == [[x]] assert factor_system([1, 0, x]) == [] assert factor_system([x**4 - 1, y**6 - 1]) == [ [x**2 + 1, y**2 + y + 1], [x**2 + 1, y**2 - y + 1], [x**2 + 1, y + 1], [x**2 + 1, y - 1], [x + 1, y**2 + y + 1], [x + 1, y**2 - y + 1], [x - 1, y**2 + y + 1], [x - 1, y**2 - y + 1], [x + 1, y + 1], [x + 1, y - 1], [x - 1, y + 1], [x - 1, y - 1], ] assert factor_system([(x - 1)*(y - 2), (y - 2)*(z - 3)]) == [ [x - 1, z - 3], [y - 2] ] assert factor_system([sin(x)**2 + cos(x)**2 - 1, x]) == [ [x, sin(x)**2 + cos(x)**2 - 1], ] assert factor_system([sin(x)**2 + cos(x)**2 - 1]) == [ [sin(x)**2 + cos(x)**2 - 1] ] assert factor_system([sin(x)**2 + cos(x)**2]) == [ [sin(x)**2 + cos(x)**2] ] assert factor_system([a*x, y, a]) == [[y, a]] assert factor_system([a*x, y, a], [x, y]) == [] assert factor_system([a ** 2 * x, y], [x, y]) == [[x, y]] assert factor_system([a*x*(x - 1), b*y, c], [x, y]) == [] assert factor_system([a*x*(x - 1), b*y, c], [x, y, c]) == [ [x - 1, y, c], [x, y, c], ] assert factor_system([a*x*(x - 1), b*y, c]) == [ [x - 1, y, c], [x, y, c], [x - 1, b, c], [x, b, c], [y, a, c], [a, b, c], ] assert factor_system([x**2 - 2], [y]) == [] assert factor_system([x**2 - 2], [x]) == [[x**2 - 2]] assert factor_system([cos(x)**2 - sin(x)**2, cos(x)**2 + sin(x)**2 - 1]) == [ [sin(x)**2 + cos(x)**2 - 1, sin(x) + cos(x)], [sin(x)**2 + cos(x)**2 - 1, -sin(x) + cos(x)], ] assert factor_system([(cos(x) + sin(x))**2 - 1, cos(x)**2 - sin(x)**2 - cos(2*x)]) == [ [sin(x)**2 - cos(x)**2 + cos(2*x), sin(x) + cos(x) + 1], [sin(x)**2 - cos(x)**2 + cos(2*x), sin(x) + cos(x) - 1], ] assert factor_system([(cos(x) + sin(x))*exp(y) - 1, (cos(x) - sin(x))*exp(y) - 1]) == [ [exp(y)*sin(x) + exp(y)*cos(x) - 1, -exp(y)*sin(x) + exp(y)*cos(x) - 1] ] def test_factor_system_poly(): px = lambda e: Poly(e, x) pxab = lambda e: Poly(e, x, domain=ZZ[a, b]) pxI = lambda e: Poly(e, x, domain=QQ_I) pxyz = lambda e: Poly(e, (x, y, z)) assert factor_system_poly([px(x**2 - 1), px(x**2 - 4)]) == [ [px(x + 2), px(x + 1)], [px(x + 2), px(x - 1)], [px(x + 1), px(x - 2)], [px(x - 1), px(x - 2)], ] assert factor_system_poly([px(x**2 - 1)]) == [[px(x + 1)], [px(x - 1)]] assert factor_system_poly([pxyz(x**2*y - y), pxyz(x**2*z - z)]) == [ [pxyz(x + 1)], [pxyz(x - 1)], [pxyz(y), pxyz(z)], ] assert factor_system_poly([px(x**2*(x - 1)**2), px(x*(x - 1))]) == [ [px(x)], [px(x - 1)], ] assert factor_system_poly([pxyz(x**2 + y*x), pxyz(x**2 + z*x)]) == [ [pxyz(x + y), pxyz(x + z)], [pxyz(x)], ] assert factor_system_poly([pxab((a - 1)*(x - 2)), pxab((b - 3)*(x - 2))]) == [ [pxab(x - 2)], [pxab(a - 1), pxab(b - 3)], ] assert factor_system_poly([pxI(x**2 + 1)]) == [[pxI(x + I)], [pxI(x - I)]] assert factor_system_poly([]) == [[]] assert factor_system_poly([px(1)]) == [] assert factor_system_poly([px(0), px(x)]) == [[px(x)]] def test_factor_system_cond(): assert factor_system_cond([x ** 2 - 1, x ** 2 - 4]) == [ [x + 2, x + 1], [x + 2, x - 1], [x + 1, x - 2], [x - 1, x - 2], ] assert factor_system_cond([1]) == [] assert factor_system_cond([0]) == [[]] assert factor_system_cond([1, x]) == [] assert factor_system_cond([0, x]) == [[x]] assert factor_system_cond([]) == [[]] assert factor_system_cond([x**2 + y*x]) == [[x + y], [x]] assert factor_system_cond([(a - 1)*(x - 2), (b - 3)*(x - 2)], [x]) == [ [x - 2], [a - 1, b - 3], ] assert factor_system_cond([a * (x - 1), b], [x]) == [[x - 1, b], [a, b]] assert factor_system_cond([a*x*(x-1), b*y, c], [x, y]) == [ [x - 1, y, c], [x, y, c], [x - 1, b, c], [x, b, c], [y, a, c], [a, b, c], ] assert factor_system_cond([x*(x-1), y], [x, y]) == [[x - 1, y], [x, y]] assert factor_system_cond([a*x, y, a], [x, y]) == [[y, a]] assert factor_system_cond([a*x, b*x], [x, y]) == [[x], [a, b]] assert factor_system_cond([a*b*x, y], [x, y]) == [[x, y], [y, a*b]] assert factor_system_cond([a*b*x, y]) == [[x, y], [y, a], [y, b]] assert factor_system_cond([a**2*x, y], [x, y]) == [[x, y], [y, a]] def test_factor_system_bool(): eqs = [a*(x - 1)*(y - 1), b*(x - 2)*(y - 1)*(y - 2)] assert factor_system_bool(eqs, [x, y]) == ( Eq(y - 1, 0) | (Eq(a, 0) & Eq(b, 0)) | (Eq(a, 0) & Eq(x - 2, 0)) | (Eq(a, 0) & Eq(y - 2, 0)) | (Eq(b, 0) & Eq(x - 1, 0)) | (Eq(x - 2, 0) & Eq(x - 1, 0)) | (Eq(x - 1, 0) & Eq(y - 2, 0)) ) assert factor_system_bool([x - 1], [x]) == Eq(x - 1, 0) assert factor_system_bool([(x - 1)*(x - 2)], [x]) == Eq(x - 2, 0) | Eq(x - 1, 0) assert factor_system_bool([], [x]) == True assert factor_system_bool([0], [x]) == True assert factor_system_bool([1], [x]) == False assert factor_system_bool([a], [x]) == Eq(a, 0) assert factor_system_bool([a * x, y, a], [x, y]) == Eq(a, 0) & Eq(y, 0) assert (factor_system_bool([a*x, b*y*x, a], [x, y]) == ( Eq(a, 0) & Eq(b, 0)) | (Eq(a, 0) & Eq(x, 0)) | (Eq(a, 0) & Eq(y, 0))) assert (factor_system_bool([a*x, b*x], [x, y]) == Eq(x, 0) | (Eq(a, 0) & Eq(b, 0))) assert (factor_system_bool([a*b*x, y], [x, y]) == ( Eq(x, 0) & Eq(y, 0)) | (Eq(y, 0) & Eq(a*b, 0))) assert (factor_system_bool([a**2*x, y], [x, y]) == ( Eq(a, 0) & Eq(y, 0)) | (Eq(x, 0) & Eq(y, 0))) assert factor_system_bool([a*x*y, b*y*z], [x, y, z]) == ( Eq(y, 0) | (Eq(a, 0) & Eq(b, 0)) | (Eq(a, 0) & Eq(z, 0)) | (Eq(b, 0) & Eq(x, 0)) | (Eq(x, 0) & Eq(z, 0)) ) assert factor_system_bool([a*(x - 1), b], [x]) == ( (Eq(a, 0) & Eq(b, 0)) | (Eq(x - 1, 0) & Eq(b, 0)) ) def test_factor_sets(): # from random import randint def generate_random_system(n_eqs=3, n_factors=2, max_val=10): return [ [randint(0, max_val) for _ in range(randint(1, n_factors))] for _ in range(n_eqs) ] test_cases = [ [[1, 2], [1, 3]], [[1, 2], [3, 4]], [[1], [1, 2], [2]], ] for case in test_cases: assert _factor_sets(case) == _factor_sets_slow(case) for _ in range(100): system = generate_random_system() assert _factor_sets(system) == _factor_sets_slow(system)