# coding=utf-8 # Copyright 2024 IBM and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Bamba model configuration""" from ...configuration_utils import PretrainedConfig from ...utils import logging logger = logging.get_logger(__name__) class BambaConfig(PretrainedConfig): r""" This is the configuration class to store the configuration of a [`BambaModel`]. It is used to instantiate a BambaModel model according to the specified arguments, defining the model architecture. Instantiating a configuration with defaults taken from [ibm-fms/Bamba-9.8b-2.2T-hf](https://huggingface.co/ibm-fms/Bamba-9.8b-2.2T-hf). The BambaModel is a hybrid [mamba2](https://github.com/state-spaces/mamba) architecture with SwiGLU. The checkpoints are jointly trained by IBM, Princeton, and UIUC. Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the documentation from [`PretrainedConfig`] for more information. Args: vocab_size (`int`, *optional*, defaults to 128000): Vocabulary size of the Bamba model. Defines the number of different tokens that can be represented by the `inputs_ids` passed when calling [`BambaModel`] tie_word_embeddings (`bool`, *optional*, defaults to `False`): Whether the model's input and output word embeddings should be tied. Note that this is only relevant if the model has an output word embedding layer. hidden_size (`int`, *optional*, defaults to 4096): Dimension of the hidden representations. intermediate_size (`int`, *optional*, defaults to 14336): Dimension of the MLP representations. num_hidden_layers (`int`, *optional*, defaults to 32): Number of hidden layers in the Transformer encoder. num_attention_heads (`int`, *optional*, defaults to 32): Number of attention heads for each attention layer in the Transformer encoder. num_key_value_heads (`int`, *optional*, defaults to 8): This is the number of key_value heads that should be used to implement Grouped Query Attention. If `num_key_value_heads=num_attention_heads`, the model will use Multi Head Attention (MHA), if `num_key_value_heads=1` the model will use Multi Query Attention (MQA) otherwise GQA is used. When converting a multi-head checkpoint to a GQA checkpoint, each group key and value head should be constructed by meanpooling all the original heads within that group. For more details, check out [this paper](https://huggingface.co/papers/2305.13245). If it is not specified, will default to `8`. hidden_act (`str` or `function`, *optional*, defaults to `"silu"`): The non-linear activation function (function or string) in the decoder. initializer_range (`float`, *optional*, defaults to 0.02): The standard deviation of the truncated_normal_initializer for initializing all weight matrices. rms_norm_eps (`float`, *optional*, defaults to 1e-05): The epsilon used by the rms normalization layers. use_cache (`bool`, *optional*, defaults to `True`): Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if `config.is_decoder=True`. num_logits_to_keep (`int` or `None`, *optional*, defaults to 1): Number of prompt logits to calculate during generation. If `None`, all logits will be calculated. If an integer value, only last `num_logits_to_keep` logits will be calculated. Default is 1 because only the logits of the last prompt token are needed for generation. For long sequences, the logits for the entire sequence may use a lot of memory so, setting `num_logits_to_keep=1` will reduce memory footprint significantly. pad_token_id (`int`, *optional*, defaults to 0): The id of the padding token. bos_token_id (`int`, *optional*, defaults to 1): The id of the "beginning-of-sequence" token. eos_token_id (`int`, *optional*, defaults to 2): The id of the "end-of-sequence" token. max_position_embeddings (`int`, *optional*, defaults to 262144): Max cached sequence length for the model attention_dropout (`float`, *optional*, defaults to 0.0): The dropout ratio for the attention probabilities. attn_layer_indices (`list`, *optional*): Specifies the layer indices that will have full attention. Must contain values at most num_hidden_layers. mamba_n_heads (`int`, *optional*, defaults to 128): The number of mamba heads used in the v2 implementation. mamba_d_head (`int`, *optional*, defaults to `"auto"`): Head embedding dimension size mamba_n_groups (`int`, *optional*, defaults to 1): The number of the mamba groups used in the v2 implementation. mamba_d_state (`int`, *optional*, defaults to 256): The dimension the mamba state space latents mamba_d_conv (`int`, *optional*, defaults to 4): The size of the mamba convolution kernel mamba_expand (`int`, *optional*, defaults to 2): Expanding factor (relative to hidden_size) used to determine the mamba intermediate size mamba_chunk_size (`int`, *optional*, defaults to 256): The chunks in which to break the sequence when doing prefill/training mamba_conv_bias (`bool`, *optional*, defaults to `True`): Flag indicating whether or not to use bias in the convolution layer of the mamba mixer block. mamba_proj_bias (`bool`, *optional*, defaults to `False`): Flag indicating whether or not to use bias in the input and output projections (["in_proj", "out_proj"]) of the mamba mixer block z_loss_coefficient (`float`, *optional*, defaults to 0.0): Coefficient for auxiliary z-loss used to control logit growth during training """ model_type = "bamba" keys_to_ignore_at_inference = ["past_key_values"] def __init__( self, vocab_size=128000, tie_word_embeddings=False, hidden_size=4096, intermediate_size=14336, num_hidden_layers=32, num_attention_heads=32, num_key_value_heads=8, hidden_act="silu", initializer_range=0.02, rms_norm_eps=1e-5, use_cache=True, num_logits_to_keep=1, pad_token_id=0, bos_token_id=1, eos_token_id=2, max_position_embeddings=262144, attention_dropout=0.0, attn_layer_indices=None, mamba_n_heads=128, mamba_d_head="auto", mamba_n_groups=1, mamba_d_state=256, mamba_d_conv=4, mamba_expand=2, mamba_chunk_size=256, mamba_conv_bias=True, mamba_proj_bias=False, z_loss_coefficient=0.0, **kwargs, ): self.vocab_size = vocab_size self.tie_word_embeddings = tie_word_embeddings self.hidden_size = hidden_size self.intermediate_size = intermediate_size self.num_hidden_layers = num_hidden_layers self.num_attention_heads = num_attention_heads self.max_position_embeddings = max_position_embeddings self.attention_dropout = attention_dropout self.attention_bias = False self.mlp_bias = False # for backward compatibility if num_key_value_heads is None: num_key_value_heads = num_attention_heads self.num_key_value_heads = num_key_value_heads self.hidden_act = hidden_act self.initializer_range = initializer_range self.rms_norm_eps = rms_norm_eps self.use_cache = use_cache self.num_logits_to_keep = num_logits_to_keep self.attn_layer_indices = attn_layer_indices self.rope_theta = 10000.0 self.rope_scaling = None self.partial_rotary_factor = 0.5 mamba_intermediate = mamba_expand * hidden_size if mamba_intermediate % mamba_n_heads != 0: raise ValueError("mamba_n_heads must divide mamba_expand * hidden_size") # for the mamba_v2, must satisfy the following if mamba_d_head == "auto": mamba_d_head = mamba_intermediate // mamba_n_heads if mamba_d_head * mamba_n_heads != mamba_intermediate: raise ValueError("The dimensions for the Mamba head state do not match the model intermediate_size") self.mamba_n_heads = mamba_n_heads self.mamba_d_head = mamba_d_head self.mamba_n_groups = mamba_n_groups self.mamba_d_state = mamba_d_state self.mamba_d_conv = mamba_d_conv self.mamba_expand = mamba_expand self.mamba_chunk_size = mamba_chunk_size self.mamba_conv_bias = mamba_conv_bias self.mamba_proj_bias = mamba_proj_bias self.z_loss_coefficient = z_loss_coefficient super().__init__( pad_token_id=pad_token_id, bos_token_id=bos_token_id, eos_token_id=eos_token_id, tie_word_embeddings=tie_word_embeddings, **kwargs, ) @property def layers_block_type(self): return [ "attention" if (self.attn_layer_indices and i in self.attn_layer_indices) else "mamba" for i in range(self.num_hidden_layers) ] __all__ = ["BambaConfig"]