# coding=utf-8 # Copyright 2024 The HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Processor class for PaliGemma. """ from typing import Optional, Union import numpy as np from ...feature_extraction_utils import BatchFeature from ...image_utils import ImageInput, is_valid_image, make_flat_list_of_images from ...processing_utils import ( ImagesKwargs, MultiModalData, ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack, ) from ...tokenization_utils_base import AddedToken, PreTokenizedInput, TextInput from ...utils import logging logger = logging.get_logger(__name__) IMAGE_TOKEN = "" EXTRA_TOKENS = [f"4}>" for i in range(1024)] + [f"3}>" for i in range(128)] class PaliGemmaTextKwargs(TextKwargs): suffix: Optional[Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]]] class PaliGemmaImagesKwargs(ImagesKwargs): do_convert_rgb: Optional[bool] class PaliGemmaProcessorKwargs(ProcessingKwargs, total=False): text_kwargs: PaliGemmaTextKwargs images_kwargs: PaliGemmaImagesKwargs _defaults = { "text_kwargs": { "padding": False, "return_mm_token_type_ids": False, }, "images_kwargs": { "data_format": "channels_first", }, } # Copied from transformers.models.idefics2.processing_idefics2.is_url def is_url(val) -> bool: return isinstance(val, str) and val.startswith("http") # Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url def is_image_or_image_url(elem): return is_url(elem) or is_valid_image(elem) def _is_str_or_image(elem): return isinstance(elem, (str)) or is_image_or_image_url(elem) def build_string_from_input(prompt, bos_token, image_seq_len, image_token, num_images): """ Builds a string from the input prompt and image tokens. For example, for the call: build_string_from_input( prompt="Prefix str" bos_token="", image_seq_len=3, image_token="", ) The output will be: "Initial str" Args: prompt (`list[Union[str, ImageInput]]`): The input prompt. bos_token (`str`): The beginning of sentence token. image_seq_len (`int`): The length of the image sequence. image_token (`str`): The image token. num_images (`int`): Number of images in the prompt. """ return f"{image_token * image_seq_len * num_images}{bos_token}{prompt}\n" class PaliGemmaProcessor(ProcessorMixin): r""" Constructs a PaliGemma processor which wraps a PaliGemma image processor and a PaliGemma tokenizer into a single processor. [`PaliGemmaProcessor`] offers all the functionalities of [`SiglipImageProcessor`] and [`GemmaTokenizerFast`]. See the [`~PaliGemmaProcessor.__call__`] and [`~PaliGemmaProcessor.decode`] for more information. Args: image_processor ([`SiglipImageProcessor`], *optional*): The image processor is a required input. tokenizer ([`GemmaTokenizerFast`], *optional*): The tokenizer is a required input. chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. """ attributes = ["image_processor", "tokenizer"] image_processor_class = ("SiglipImageProcessor", "SiglipImageProcessorFast") tokenizer_class = ("GemmaTokenizer", "GemmaTokenizerFast") def __init__( self, image_processor=None, tokenizer=None, chat_template=None, **kwargs, ): if image_processor is None: raise ValueError("You need to specify an `image_processor`.") if tokenizer is None: raise ValueError("You need to specify a `tokenizer`.") if not hasattr(image_processor, "image_seq_length"): raise ValueError("Image processor is missing an `image_seq_length` attribute.") self.image_seq_length = image_processor.image_seq_length if not hasattr(tokenizer, "image_token"): image_token = AddedToken(IMAGE_TOKEN, normalized=False, special=True) tokens_to_add = {"additional_special_tokens": [image_token]} tokenizer.add_special_tokens(tokens_to_add) self.image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN) self.image_token = IMAGE_TOKEN else: self.image_token_id = tokenizer.image_token_id self.image_token = tokenizer.image_token tokenizer.add_tokens(EXTRA_TOKENS) tokenizer.add_bos_token = False tokenizer.add_eos_token = False super().__init__(image_processor, tokenizer, chat_template=chat_template) def __call__( self, images: ImageInput = None, text: Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]] = None, audio=None, videos=None, **kwargs: Unpack[PaliGemmaProcessorKwargs], ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to GemmaTokenizerFast's [`~GemmaTokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to SiglipImageProcessor's [`~SiglipImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring of the above two methods for more information. The usage for PaliGemma fine-tuning preparation is slightly different than usual. suffix passed are suffixes to the prompt in `text`, and will be placed after the prompt. This is because attention is handled differently for the prefix and the suffix. For instance, ```python image = PIL_cow_image prompt = "answer en Where is the cow standing?" suffix = "on the beach" inputs = processor(text=prompt, images=image, suffix=suffix) ``` Here `inputs` will contain the `input_ids` and `token_type_ids` that follow ```python inputs["input_ids"][:, 256:] # tensor([[ 2, 6006, 603, 573, 13910, 9980, 235336, 108, 477, 573, 8318]]) inputs["token_type_ids"][:, 256:] tensor([[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1]]) ``` Meaning the last three tokens are of "label" ("suffix") type while the other ones are of "prefix" type. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a number of channels, H and W are image height and width. text (`str`, `list[str]`, `list[list[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. suffix (`str`, `list[str]`, `list[list[str]]`): The suffixes or batch of suffixes to be encoded. Only necessary for finetuning. See https://github.com/google-research/big_vision/blob/main/big_vision/configs/proj/paligemma/README.md for more information. If your prompt is " What is on the image", the suffix corresponds to the expected prediction "a cow sitting on a bench". Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix` is provided, the `input_ids` will also contain the suffix input ids. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. - **labels** -- Labels compatible with training if `suffix` is not None """ output_kwargs = self._merge_kwargs( PaliGemmaProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) suffix = output_kwargs["text_kwargs"].pop("suffix", None) return_token_type_ids = True if suffix is not None else False if images is None: raise ValueError("`images` are expected as arguments to a `PaliGemmaProcessor` instance.") if text is None: logger.warning_once( "You are using PaliGemma without a text prefix. It will perform as a picture-captioning model." ) text = "" if _is_str_or_image(text): text = [text] elif isinstance(text, list) and _is_str_or_image(text[0]): pass if text is not None and images is not None: if not any(IMAGE_TOKEN in sample for sample in text): logger.warning( "You are passing both `text` and `images` to `PaliGemmaProcessor`. The processor expects special " "image tokens in the text, as many tokens as there are images per each text. It is recommended to " "add `` tokens in the very beginning of your text. For this call, we will infer how many images " "each text has and add special tokens." ) if isinstance(text, list) and isinstance(images, list): if len(images) != len(text): raise ValueError( f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image or list of images." ) # make a nested list of lists to be able to iterate over the images and text below if is_valid_image(images): images = [[images]] elif isinstance(images, (list, tuple)) and is_valid_image(images[0]): images = [[image] for image in images] elif not ( isinstance(images, (list, tuple)) and isinstance(images[0], (list, tuple)) and is_valid_image(images[0][0]) ): raise ValueError("images must be an image, list of images or list of list of images") input_strings = [ build_string_from_input( prompt=prompt, bos_token=self.tokenizer.bos_token, image_seq_len=self.image_seq_length, image_token=IMAGE_TOKEN, num_images=len(image_list) if isinstance(image_list, list) else 1, ) for prompt, image_list in zip(text, images) ] images = make_flat_list_of_images(images) else: expanded_samples = [] for sample in text: expanded_sample = sample.replace(IMAGE_TOKEN, IMAGE_TOKEN * self.image_seq_length) bos_rfind_index = expanded_sample.rfind(IMAGE_TOKEN) bos_index = bos_rfind_index + len(IMAGE_TOKEN) if bos_rfind_index != -1 else 0 expanded_sample = ( expanded_sample[:bos_index] + self.tokenizer.bos_token + expanded_sample[bos_index:] ) expanded_samples.append(expanded_sample) input_strings = [f"{sample}\n" for sample in expanded_samples] if suffix is not None and _is_str_or_image(suffix): suffix = [suffix] if suffix is not None: suffix = [sfx + self.tokenizer.eos_token for sfx in suffix] pixel_values = self.image_processor(images, **output_kwargs["images_kwargs"])["pixel_values"] return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None) return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", None) inputs = self.tokenizer( input_strings, text_pair=suffix, return_token_type_ids=return_token_type_ids, **output_kwargs["text_kwargs"], ) self._check_special_mm_tokens(input_strings, inputs, modalities=["image"]) return_data = {**inputs, "pixel_values": pixel_values} if return_token_type_ids: labels = np.array(inputs["input_ids"]) labels[np.array(inputs["token_type_ids"]) == 0] = -100 return_data.update({"labels": labels}) if return_mm_token_type_ids: array_ids = np.array(return_data["input_ids"]) mm_token_type_ids = np.zeros_like(return_data["input_ids"]) mm_token_type_ids[array_ids == self.image_token_id] = 1 return_data["mm_token_type_ids"] = mm_token_type_ids.tolist() return BatchFeature(data=return_data, tensor_type=return_tensors) def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs): """ Computes the number of placeholder tokens needed for multimodal inputs with the given sizes. Args: image_sizes (list[list[str]], *optional*): The input sizes formatted as (height, width) per each image. Returns: dict[str, list[int]]: A dictionary mapping each modality ("image", "video", "audio") to a list containing the number of placeholder tokens required. If the model doesn't accept a certain modality or no input sizes are provided, the dict value is set to an empty list. """ vision_data = {} if image_sizes is not None: num_image_tokens = [self.image_seq_length] * len(image_sizes) num_image_patches = [1] * len(image_sizes) vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches}) return MultiModalData(**vision_data) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Gemma def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Gemma def decode(self, *args, **kwargs): """ This method forwards all its arguments to GemmaTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->PaliGemma def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) __all__ = ["PaliGemmaProcessor"]