# coding=utf-8 # Copyright 2018 Mesh TensorFlow authors, T5 Authors and HuggingFace Inc. team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch T5 model.""" import copy import math import os import warnings from typing import Optional, Union import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache, EncoderDecoderCache from ...generation import GenerationMixin from ...modeling_attn_mask_utils import AttentionMaskConverter from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import ( BaseModelOutput, BaseModelOutputWithPastAndCrossAttentions, Seq2SeqLMOutput, Seq2SeqModelOutput, Seq2SeqQuestionAnsweringModelOutput, Seq2SeqSequenceClassifierOutput, TokenClassifierOutput, ) from ...modeling_utils import PreTrainedModel from ...pytorch_utils import find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( DUMMY_INPUTS, DUMMY_MASK, add_start_docstrings, auto_docstring, is_torch_flex_attn_available, is_torch_fx_proxy, is_torchdynamo_compiling, logging, ) from ...utils.model_parallel_utils import assert_device_map, get_device_map from .configuration_t5 import T5Config if is_torch_flex_attn_available(): from torch.nn.attention.flex_attention import BlockMask from ...integrations.flex_attention import make_flex_block_causal_mask logger = logging.get_logger(__name__) #################################################### # This dict contains ids and associated url # for the pretrained weights provided with the models #################################################### #################################################### # This is a conversion method from TF 1.0 to PyTorch # More details: https://medium.com/huggingface/from-tensorflow-to-pytorch-265f40ef2a28 #################################################### def load_tf_weights_in_t5(model, config, tf_checkpoint_path): """Load tf checkpoints in a pytorch model.""" try: import re import numpy as np import tensorflow as tf except ImportError: logger.error( "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see " "https://www.tensorflow.org/install/ for installation instructions." ) raise tf_path = os.path.abspath(tf_checkpoint_path) logger.info(f"Converting TensorFlow checkpoint from {tf_path}") # Load weights from TF model init_vars = tf.train.list_variables(tf_path) names = [] tf_weights = {} for name, shape in init_vars: logger.info(f"Loading TF weight {name} with shape {shape}") array = tf.train.load_variable(tf_path, name) names.append(name) tf_weights[name] = array for txt_name in names: name = txt_name.split("/") # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v # which are not required for using pretrained model if any( n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"] for n in name ): logger.info(f"Skipping {'/'.join(name)}") tf_weights.pop(txt_name, None) continue if "_slot_" in name[-1]: logger.info(f"Skipping {'/'.join(name)}") tf_weights.pop(txt_name, None) continue pointer = model array = tf_weights[txt_name] for m_name in name: if re.fullmatch(r"[A-Za-z]+_\d+", m_name): scope_names = re.split(r"_(\d+)", m_name) else: scope_names = [m_name] if scope_names[0] in ["kernel", "scale", "embedding"]: pointer = getattr(pointer, "weight") elif scope_names[0] == "self_attention": pointer = getattr(pointer, "layer") pointer = pointer[0] elif scope_names[0] == "enc_dec_attention": pointer = getattr(pointer, "layer") pointer = pointer[1] elif scope_names[0] == "dense_relu_dense": pointer = getattr(pointer, "layer") pointer = pointer[2] elif scope_names[0] == "rms_norm": if hasattr(pointer, "layer_norm"): pointer = getattr(pointer, "layer_norm") elif hasattr(pointer, "final_layer_norm"): pointer = getattr(pointer, "final_layer_norm") elif scope_names[0] == "scale": pointer = getattr(pointer, "weight") elif scope_names[0] == "output_bias" or scope_names[0] == "beta": pointer = getattr(pointer, "bias") elif scope_names[0] == "squad": pointer = getattr(pointer, "classifier") elif scope_names[0] == "decoder" and name[1] == "logits": continue elif scope_names[0] == "logits": pointer = getattr(pointer, "lm_head") elif scope_names[0] == "wi" and len(scope_names) > 1 and scope_names[1].isdigit(): pointer = getattr(pointer, f"wi_{scope_names[1]}") continue else: try: pointer = getattr(pointer, scope_names[0]) except AttributeError: logger.info(f"Skipping {'/'.join(name)}") continue if len(scope_names) >= 2: num = int(scope_names[1]) pointer = pointer[num] if scope_names[0] not in ["kernel", "scale", "embedding"]: pointer = getattr(pointer, "weight") if scope_names[0] != "embedding": logger.info(f"Transposing numpy weight of shape {array.shape} for {name}") array = np.transpose(array) try: if pointer.shape != array.shape: raise ValueError(f"Pointer shape {pointer.shape} and array shape {array.shape} mismatched") except AssertionError as e: e.args += (pointer.shape, array.shape) raise logger.info(f"Initialize PyTorch weight {name}") pointer.data = torch.from_numpy(array.astype(np.float32)) tf_weights.pop(txt_name, None) logger.info(f"Weights not copied to PyTorch model: {', '.join(tf_weights.keys())}.") return model #################################################### # PyTorch Models are constructed by sub-classing # - torch.nn.Module for the layers and # - PreTrainedModel for the models (it-self a sub-class of nn.Module) #################################################### PARALLELIZE_DOCSTRING = r""" This is an experimental feature and is a subject to change at a moment's notice. Uses a device map to distribute attention modules of the model across several devices. If no device map is given, it will evenly distribute blocks across all devices. Args: device_map (`dict[int, list]`, *optional*): A dictionary that maps attention modules to devices. Note that the embedding module and LMHead are always automatically mapped to the first device (for esoteric reasons). That means that the first device should have fewer attention modules mapped to it than other devices. For reference, the t5 models have the following number of attention modules: - google-t5/t5-small: 6 - google-t5/t5-base: 12 - google-t5/t5-large: 24 - google-t5/t5-3b: 24 - google-t5/t5-11b: 24 Example: ```python # Here is an example of a device map on a machine with 4 GPUs using google-t5/t5-3b, which has a total of 24 attention modules: model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b") device_map = { 0: [0, 1, 2], 1: [3, 4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14, 15, 16], 3: [17, 18, 19, 20, 21, 22, 23], } model.parallelize(device_map) ``` """ DEPARALLELIZE_DOCSTRING = r""" Moves the model to cpu from a model parallel state. Example: ```python # On a 4 GPU machine with google-t5/t5-3b: model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-3b") device_map = { 0: [0, 1, 2], 1: [3, 4, 5, 6, 7, 8, 9], 2: [10, 11, 12, 13, 14, 15, 16], 3: [17, 18, 19, 20, 21, 22, 23], } model.parallelize(device_map) # Splits the model across several devices model.deparallelize() # Put the model back on cpu and cleans memory by calling torch.cuda.empty_cache() ``` """ class T5LayerNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ Construct a layernorm module in the T5 style. No bias and no subtraction of mean. """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): # T5 uses a layer_norm which only scales and doesn't shift, which is also known as Root Mean # Square Layer Normalization https://huggingface.co/papers/1910.07467 thus variance is calculated # w/o mean and there is no bias. Additionally we want to make sure that the accumulation for # half-precision inputs is done in fp32 variance = hidden_states.to(torch.float32).pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) # convert into half-precision if necessary if self.weight.dtype in [torch.float16, torch.bfloat16]: hidden_states = hidden_states.to(self.weight.dtype) return self.weight * hidden_states try: from apex.normalization import FusedRMSNorm T5LayerNorm = FusedRMSNorm # noqa logger.info("Discovered apex.normalization.FusedRMSNorm - will use it instead of T5LayerNorm") except ImportError: # using the normal T5LayerNorm pass except Exception: logger.warning("discovered apex but it failed to load, falling back to T5LayerNorm") pass class T5DenseActDense(nn.Module): def __init__(self, config: T5Config): super().__init__() self.wi = nn.Linear(config.d_model, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.act = ACT2FN[config.dense_act_fn] def forward(self, hidden_states): hidden_states = self.wi(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.dropout(hidden_states) if ( isinstance(self.wo.weight, torch.Tensor) and hidden_states.dtype != self.wo.weight.dtype and self.wo.weight.dtype != torch.int8 ): hidden_states = hidden_states.to(self.wo.weight.dtype) hidden_states = self.wo(hidden_states) return hidden_states class T5DenseGatedActDense(nn.Module): def __init__(self, config: T5Config): super().__init__() self.wi_0 = nn.Linear(config.d_model, config.d_ff, bias=False) self.wi_1 = nn.Linear(config.d_model, config.d_ff, bias=False) self.wo = nn.Linear(config.d_ff, config.d_model, bias=False) self.dropout = nn.Dropout(config.dropout_rate) self.act = ACT2FN[config.dense_act_fn] def forward(self, hidden_states): hidden_gelu = self.act(self.wi_0(hidden_states)) hidden_linear = self.wi_1(hidden_states) hidden_states = hidden_gelu * hidden_linear hidden_states = self.dropout(hidden_states) # To make 8bit quantization work for google/flan-t5-xxl, self.wo is kept in float32. # See https://github.com/huggingface/transformers/issues/20287 # we also make sure the weights are not in `int8` in case users will force `_keep_in_fp32_modules` to be `None`` if ( isinstance(self.wo.weight, torch.Tensor) and hidden_states.dtype != self.wo.weight.dtype and self.wo.weight.dtype != torch.int8 ): hidden_states = hidden_states.to(self.wo.weight.dtype) hidden_states = self.wo(hidden_states) return hidden_states class T5LayerFF(nn.Module): def __init__(self, config: T5Config): super().__init__() if config.is_gated_act: self.DenseReluDense = T5DenseGatedActDense(config) else: self.DenseReluDense = T5DenseActDense(config) self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward(self, hidden_states): forwarded_states = self.layer_norm(hidden_states) forwarded_states = self.DenseReluDense(forwarded_states) hidden_states = hidden_states + self.dropout(forwarded_states) return hidden_states class T5Attention(nn.Module): def __init__( self, config: T5Config, has_relative_attention_bias=False, layer_idx: Optional[int] = None, ): super().__init__() self.is_decoder = config.is_decoder self.has_relative_attention_bias = has_relative_attention_bias self.relative_attention_num_buckets = config.relative_attention_num_buckets self.relative_attention_max_distance = config.relative_attention_max_distance self.d_model = config.d_model self.key_value_proj_dim = config.d_kv self.n_heads = config.num_heads self.dropout = config.dropout_rate self.inner_dim = self.n_heads * self.key_value_proj_dim self.layer_idx = layer_idx if layer_idx is None and self.is_decoder: logger.warning_once( f"Instantiating a decoder {self.__class__.__name__} without passing `layer_idx` is not recommended and " "will to errors during the forward call, if caching is used. Please make sure to provide a `layer_idx` " "when creating this class." ) # Mesh TensorFlow initialization to avoid scaling before softmax self.q = nn.Linear(self.d_model, self.inner_dim, bias=False) self.k = nn.Linear(self.d_model, self.inner_dim, bias=False) self.v = nn.Linear(self.d_model, self.inner_dim, bias=False) self.o = nn.Linear(self.inner_dim, self.d_model, bias=False) if self.has_relative_attention_bias: self.relative_attention_bias = nn.Embedding(self.relative_attention_num_buckets, self.n_heads) self.pruned_heads = set() self.gradient_checkpointing = False def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.n_heads, self.key_value_proj_dim, self.pruned_heads ) # Prune linear layers self.q = prune_linear_layer(self.q, index) self.k = prune_linear_layer(self.k, index) self.v = prune_linear_layer(self.v, index) self.o = prune_linear_layer(self.o, index, dim=1) # Update hyper params self.n_heads = self.n_heads - len(heads) self.inner_dim = self.key_value_proj_dim * self.n_heads self.pruned_heads = self.pruned_heads.union(heads) @staticmethod def _relative_position_bucket(relative_position, bidirectional=True, num_buckets=32, max_distance=128): """ Adapted from Mesh Tensorflow: https://github.com/tensorflow/mesh/blob/0cb87fe07da627bf0b7e60475d59f95ed6b5be3d/mesh_tensorflow/transformer/transformer_layers.py#L593 Translate relative position to a bucket number for relative attention. The relative position is defined as memory_position - query_position, i.e. the distance in tokens from the attending position to the attended-to position. If bidirectional=False, then positive relative positions are invalid. We use smaller buckets for small absolute relative_position and larger buckets for larger absolute relative_positions. All relative positions >=max_distance map to the same bucket. All relative positions <=-max_distance map to the same bucket. This should allow for more graceful generalization to longer sequences than the model has been trained on Args: relative_position: an int32 Tensor bidirectional: a boolean - whether the attention is bidirectional num_buckets: an integer max_distance: an integer Returns: a Tensor with the same shape as relative_position, containing int32 values in the range [0, num_buckets) """ relative_buckets = 0 if bidirectional: num_buckets //= 2 relative_buckets += (relative_position > 0).to(torch.long) * num_buckets relative_position = torch.abs(relative_position) else: relative_position = -torch.min(relative_position, torch.zeros_like(relative_position)) # now relative_position is in the range [0, inf) # half of the buckets are for exact increments in positions max_exact = num_buckets // 2 is_small = relative_position < max_exact # The other half of the buckets are for logarithmically bigger bins in positions up to max_distance relative_position_if_large = max_exact + ( torch.log(relative_position.float() / max_exact) / math.log(max_distance / max_exact) * (num_buckets - max_exact) ).to(torch.long) relative_position_if_large = torch.min( relative_position_if_large, torch.full_like(relative_position_if_large, num_buckets - 1) ) relative_buckets += torch.where(is_small, relative_position, relative_position_if_large) return relative_buckets def compute_bias(self, query_length, key_length, device=None, cache_position=None): """Compute binned relative position bias""" if device is None: device = self.relative_attention_bias.weight.device if cache_position is None: context_position = torch.arange(query_length, dtype=torch.long, device=device)[:, None] else: context_position = cache_position[:, None].to(device) memory_position = torch.arange(key_length, dtype=torch.long, device=device)[None, :] relative_position = memory_position - context_position # shape (query_length, key_length) relative_position_bucket = self._relative_position_bucket( relative_position, # shape (query_length, key_length) bidirectional=(not self.is_decoder), num_buckets=self.relative_attention_num_buckets, max_distance=self.relative_attention_max_distance, ) values = self.relative_attention_bias(relative_position_bucket) # shape (query_length, key_length, num_heads) values = values.permute([2, 0, 1]).unsqueeze(0) # shape (1, num_heads, query_length, key_length) return values def forward( self, hidden_states, mask=None, key_value_states=None, position_bias=None, past_key_value=None, layer_head_mask=None, query_length=None, use_cache=False, output_attentions=False, cache_position=None, ): """ Self-attention (if key_value_states is None) or attention over source sentence (provided by key_value_states). """ # Input is (batch_size, seq_length, dim) # Mask is (batch_size, 1, 1, key_length) (non-causal encoder) or (batch_size, 1, seq_length, key_length) (causal decoder) batch_size, seq_length = hidden_states.shape[:2] # if key_value_states are provided this layer is used as a cross-attention layer for the decoder is_cross_attention = key_value_states is not None query_states = self.q(hidden_states) query_states = query_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) # Check is encoder-decoder model is being used. Otherwise we'll get `DynamicCache` if past_key_value is not None and isinstance(past_key_value, EncoderDecoderCache): is_updated = past_key_value.is_updated.get(self.layer_idx) if is_cross_attention: # after the first generated id, we can subsequently re-use all key/value_states from cache curr_past_key_value = past_key_value.cross_attention_cache else: curr_past_key_value = past_key_value.self_attention_cache else: curr_past_key_value = past_key_value current_states = key_value_states if is_cross_attention else hidden_states if is_cross_attention and past_key_value is not None and is_updated: # reuse k,v, cross_attentions key_states = curr_past_key_value.layers[self.layer_idx].keys value_states = curr_past_key_value.layers[self.layer_idx].values else: key_states = self.k(current_states) value_states = self.v(current_states) key_states = key_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) value_states = value_states.view(batch_size, -1, self.n_heads, self.key_value_proj_dim).transpose(1, 2) if past_key_value is not None: # save all key/value_states to cache to be re-used for fast auto-regressive generation cache_position = cache_position if not is_cross_attention else None key_states, value_states = curr_past_key_value.update( key_states, value_states, self.layer_idx, {"cache_position": cache_position} ) # set flag that curr layer for cross-attn is already updated so we can re-use in subsequent calls if is_cross_attention: past_key_value.is_updated[self.layer_idx] = True # compute scores, equivalent of torch.einsum("bnqd,bnkd->bnqk", query_states, key_states), compatible with onnx op>9 scores = torch.matmul(query_states, key_states.transpose(3, 2)) if position_bias is None: key_length = key_states.shape[-2] # cache position is 0-indexed so we add 1 to get the real length of queries (aka with past) real_seq_length = query_length if query_length is not None else cache_position[-1] + 1 if not self.has_relative_attention_bias: position_bias = torch.zeros( (1, self.n_heads, seq_length, key_length), device=scores.device, dtype=scores.dtype ) if self.gradient_checkpointing and self.training: position_bias.requires_grad = True else: position_bias = self.compute_bias( real_seq_length, key_length, device=scores.device, cache_position=cache_position ) position_bias = position_bias[:, :, -seq_length:, :] if mask is not None: causal_mask = mask[:, :, :, : key_states.shape[-2]] position_bias = position_bias + causal_mask if self.pruned_heads: mask = torch.ones(position_bias.shape[1]) mask[list(self.pruned_heads)] = 0 position_bias_masked = position_bias[:, mask.bool()] else: position_bias_masked = position_bias scores += position_bias_masked # (batch_size, n_heads, seq_length, key_length) attn_weights = nn.functional.softmax(scores.float(), dim=-1).type_as(scores) attn_weights = nn.functional.dropout(attn_weights, p=self.dropout, training=self.training) # Mask heads if we want to if layer_head_mask is not None: attn_weights = attn_weights * layer_head_mask attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() attn_output = attn_output.view(batch_size, -1, self.inner_dim) attn_output = self.o(attn_output) outputs = (attn_output, position_bias) if output_attentions: outputs = outputs + (attn_weights,) return outputs class T5LayerSelfAttention(nn.Module): def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None): super().__init__() self.SelfAttention = T5Attention( config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx ) self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, cache_position=None, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.SelfAttention( normed_hidden_states, mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, cache_position=cache_position, ) hidden_states = hidden_states + self.dropout(attention_output[0]) outputs = (hidden_states,) + attention_output[1:] # add attentions if we output them return outputs class T5LayerCrossAttention(nn.Module): def __init__(self, config, layer_idx: Optional[int] = None): super().__init__() self.EncDecAttention = T5Attention(config, has_relative_attention_bias=False, layer_idx=layer_idx) self.layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) def forward( self, hidden_states, key_value_states, attention_mask=None, position_bias=None, layer_head_mask=None, past_key_value=None, use_cache=False, query_length=None, output_attentions=False, cache_position=None, ): normed_hidden_states = self.layer_norm(hidden_states) attention_output = self.EncDecAttention( normed_hidden_states, mask=attention_mask, key_value_states=key_value_states, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, query_length=query_length, output_attentions=output_attentions, cache_position=cache_position, ) layer_output = hidden_states + self.dropout(attention_output[0]) outputs = (layer_output,) + attention_output[1:] # add attentions if we output them return outputs class T5Block(GradientCheckpointingLayer): def __init__(self, config, has_relative_attention_bias=False, layer_idx: Optional[int] = None): super().__init__() self.is_decoder = config.is_decoder self.layer = nn.ModuleList() self.layer.append( T5LayerSelfAttention(config, has_relative_attention_bias=has_relative_attention_bias, layer_idx=layer_idx) ) if self.is_decoder: self.layer.append(T5LayerCrossAttention(config, layer_idx=layer_idx)) self.layer.append(T5LayerFF(config)) def forward( self, hidden_states, attention_mask=None, position_bias=None, encoder_hidden_states=None, encoder_attention_mask=None, encoder_decoder_position_bias=None, layer_head_mask=None, cross_attn_layer_head_mask=None, past_key_value=None, use_cache=False, output_attentions=False, return_dict=True, cache_position=None, ): self_attention_outputs = self.layer[0]( hidden_states, attention_mask=attention_mask, position_bias=position_bias, layer_head_mask=layer_head_mask, past_key_value=past_key_value, use_cache=use_cache, output_attentions=output_attentions, cache_position=cache_position, ) hidden_states = self_attention_outputs[0] attention_outputs = self_attention_outputs[1:] # Keep self-attention outputs and relative position weights # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) do_cross_attention = self.is_decoder and encoder_hidden_states is not None if do_cross_attention: cross_attention_outputs = self.layer[1]( hidden_states, key_value_states=encoder_hidden_states, attention_mask=encoder_attention_mask, position_bias=encoder_decoder_position_bias, layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_value, query_length=cache_position[-1] + 1, use_cache=use_cache, output_attentions=output_attentions, ) hidden_states = cross_attention_outputs[0] # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) # Keep cross-attention outputs and relative position weights attention_outputs = attention_outputs + cross_attention_outputs[1:] # Apply Feed Forward layer hidden_states = self.layer[-1](hidden_states) # clamp inf values to enable fp16 training if hidden_states.dtype == torch.float16: clamp_value = torch.where( torch.isinf(hidden_states).any(), torch.finfo(hidden_states.dtype).max - 1000, torch.finfo(hidden_states.dtype).max, ) hidden_states = torch.clamp(hidden_states, min=-clamp_value, max=clamp_value) outputs = (hidden_states,) return ( outputs + attention_outputs ) # hidden-states, (self-attention position bias), (self-attention weights), (cross-attention position bias), (cross-attention weights) class T5ClassificationHead(nn.Module): """Head for sentence-level classification tasks.""" def __init__(self, config: T5Config): super().__init__() self.dense = nn.Linear(config.d_model, config.d_model) self.dropout = nn.Dropout(p=config.classifier_dropout) self.out_proj = nn.Linear(config.d_model, config.num_labels) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dropout(hidden_states) hidden_states = self.dense(hidden_states) hidden_states = torch.tanh(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = self.out_proj(hidden_states) return hidden_states @auto_docstring class T5PreTrainedModel(PreTrainedModel): config: T5Config load_tf_weights = load_tf_weights_in_t5 base_model_prefix = "transformer" is_parallelizable = True supports_gradient_checkpointing = True _can_compile_fullgraph = True _no_split_modules = ["T5Block"] _keep_in_fp32_modules = ["wo"] @property def dummy_inputs(self): input_ids = torch.tensor(DUMMY_INPUTS) input_mask = torch.tensor(DUMMY_MASK) dummy_inputs = { "decoder_input_ids": input_ids, "input_ids": input_ids, "decoder_attention_mask": input_mask, } return dummy_inputs def _init_weights(self, module): """Initialize the weights""" factor = self.config.initializer_factor # Used for testing weights initialization if isinstance(module, T5LayerNorm): module.weight.data.fill_(factor * 1.0) elif isinstance( module, (T5Model, T5ForConditionalGeneration, T5EncoderModel, T5ForQuestionAnswering), ): # Mesh TensorFlow embeddings initialization # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L1624 module.shared.weight.data.normal_(mean=0.0, std=factor * 1.0) if hasattr(module, "lm_head") and not self.config.tie_word_embeddings: module.lm_head.weight.data.normal_(mean=0.0, std=factor * 1.0) if hasattr(module, "qa_outputs"): module.qa_outputs.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) module.qa_outputs.bias.data.zero_() elif isinstance(module, T5ForTokenClassification): if hasattr(module, "classifier"): module.classifier.weight.data.normal_(mean=0.0, std=factor * 1.0) module.classifier.bias.data.zero_() elif isinstance(module, T5ClassificationHead): module.dense.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.dense, "bias") and module.dense.bias is not None: module.dense.bias.data.zero_() module.out_proj.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.out_proj, "bias") and module.out_proj.bias is not None: module.out_proj.bias.data.zero_() elif isinstance(module, T5DenseActDense): # Mesh TensorFlow FF initialization # See https://github.com/tensorflow/mesh/blob/master/mesh_tensorflow/transformer/transformer_layers.py#L56 # and https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L89 module.wi.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi, "bias") and module.wi.bias is not None: module.wi.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, T5DenseGatedActDense): module.wi_0.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi_0, "bias") and module.wi_0.bias is not None: module.wi_0.bias.data.zero_() module.wi_1.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_model) ** -0.5)) if hasattr(module.wi_1, "bias") and module.wi_1.bias is not None: module.wi_1.bias.data.zero_() module.wo.weight.data.normal_(mean=0.0, std=factor * ((self.config.d_ff) ** -0.5)) if hasattr(module.wo, "bias") and module.wo.bias is not None: module.wo.bias.data.zero_() elif isinstance(module, T5Attention): # Mesh TensorFlow attention initialization to avoid scaling before softmax # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/attention.py#L136 d_model = self.config.d_model key_value_proj_dim = self.config.d_kv n_heads = self.config.num_heads module.q.weight.data.normal_(mean=0.0, std=factor * ((d_model * key_value_proj_dim) ** -0.5)) module.k.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.v.weight.data.normal_(mean=0.0, std=factor * (d_model**-0.5)) module.o.weight.data.normal_(mean=0.0, std=factor * ((n_heads * key_value_proj_dim) ** -0.5)) if module.has_relative_attention_bias: module.relative_attention_bias.weight.data.normal_(mean=0.0, std=factor * ((d_model) ** -0.5)) def _shift_right(self, input_ids): decoder_start_token_id = self.config.decoder_start_token_id pad_token_id = self.config.pad_token_id if decoder_start_token_id is None: raise ValueError( "self.model.config.decoder_start_token_id has to be defined. In T5 it is usually set to the pad_token_id. " "See T5 docs for more information." ) # shift inputs to the right if is_torch_fx_proxy(input_ids): # Item assignment is not supported natively for proxies. shifted_input_ids = torch.full(input_ids.shape[:-1] + (1,), decoder_start_token_id) shifted_input_ids = torch.cat([shifted_input_ids, input_ids[..., :-1]], dim=-1) else: shifted_input_ids = input_ids.new_zeros(input_ids.shape) shifted_input_ids[..., 1:] = input_ids[..., :-1].clone() shifted_input_ids[..., 0] = decoder_start_token_id if pad_token_id is None: raise ValueError("self.model.config.pad_token_id has to be defined.") # replace possible -100 values in labels by `pad_token_id` shifted_input_ids.masked_fill_(shifted_input_ids == -100, pad_token_id) return shifted_input_ids class T5Stack(T5PreTrainedModel): def __init__(self, config, embed_tokens=None): super().__init__(config) self.embed_tokens = embed_tokens self.is_decoder = config.is_decoder self.block = nn.ModuleList( [T5Block(config, has_relative_attention_bias=bool(i == 0), layer_idx=i) for i in range(config.num_layers)] ) self.final_layer_norm = T5LayerNorm(config.d_model, eps=config.layer_norm_epsilon) self.dropout = nn.Dropout(config.dropout_rate) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None self.gradient_checkpointing = False @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`T5Stack.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," " 'block.1': 1, ...}", FutureWarning, ) # Check validity of device_map self.device_map = ( get_device_map(len(self.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.block)) self.model_parallel = True self.first_device = "cpu" if "cpu" in self.device_map.keys() else "cuda:" + str(min(self.device_map.keys())) self.last_device = "cuda:" + str(max(self.device_map.keys())) # Load onto devices for k, v in self.device_map.items(): for layer in v: cuda_device = "cuda:" + str(k) self.block[layer] = self.block[layer].to(cuda_device) # Set embed_tokens to first layer self.embed_tokens = self.embed_tokens.to(self.first_device) # Set final layer norm to last device self.final_layer_norm = self.final_layer_norm.to(self.last_device) @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.model_parallel = False self.device_map = None self.first_device = "cpu" self.last_device = "cpu" for i in range(len(self.block)): self.block[i] = self.block[i].to("cpu") self.embed_tokens = self.embed_tokens.to("cpu") self.final_layer_norm = self.final_layer_norm.to("cpu") torch.cuda.empty_cache() def set_input_embeddings(self, new_embeddings): self.embed_tokens = new_embeddings def forward( self, input_ids=None, attention_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, inputs_embeds=None, head_mask=None, cross_attn_head_mask=None, past_key_values=None, use_cache=None, output_attentions=None, output_hidden_states=None, return_dict=None, cache_position=None, ): # Model parallel if self.model_parallel: torch.cuda.set_device(self.first_device) self.embed_tokens = self.embed_tokens.to(self.first_device) use_cache = use_cache if use_cache is not None else self.config.use_cache output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError( f"You cannot specify both {err_msg_prefix}input_ids and {err_msg_prefix}inputs_embeds at the same time" ) elif input_ids is not None: input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] else: err_msg_prefix = "decoder_" if self.is_decoder else "" raise ValueError(f"You have to specify either {err_msg_prefix}input_ids or {err_msg_prefix}inputs_embeds") if self.gradient_checkpointing and self.training: if use_cache: logger.warning_once( "`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..." ) use_cache = False if inputs_embeds is None: if self.embed_tokens is None: raise ValueError("You have to initialize the model with valid token embeddings") inputs_embeds = self.embed_tokens(input_ids) batch_size, seq_length = input_shape if use_cache is True: if not self.is_decoder: raise ValueError(f"`use_cache` can only be set to `True` if {self} is used as a decoder") if self.is_decoder: if use_cache and past_key_values is None: if self.config.is_encoder_decoder: past_key_values = EncoderDecoderCache(DynamicCache(), DynamicCache()) else: past_key_values = DynamicCache() elif not self.is_decoder: # do not pass cache object down the line for encoder stack # it messes indexing later in decoder-stack because cache object is modified in-place past_key_values = None past_key_values_length = past_key_values.get_seq_length() if past_key_values is not None else 0 if cache_position is None: cache_position = torch.arange( past_key_values_length, past_key_values_length + seq_length, device=inputs_embeds.device ) if attention_mask is None and not is_torchdynamo_compiling(): # required mask seq length can be calculated via length of past cache mask_seq_length = past_key_values_length + seq_length attention_mask = torch.ones(batch_size, mask_seq_length, device=inputs_embeds.device) if self.config.is_decoder: causal_mask = self._update_causal_mask( attention_mask, inputs_embeds, cache_position, past_key_values.self_attention_cache if isinstance(past_key_values, EncoderDecoderCache) else past_key_values, output_attentions, ) elif attention_mask is not None: causal_mask = attention_mask[:, None, None, :] causal_mask = causal_mask.to(dtype=inputs_embeds.dtype) causal_mask = (1.0 - causal_mask) * torch.finfo(inputs_embeds.dtype).min else: causal_mask = None # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.is_decoder and encoder_hidden_states is not None: encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size() encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones( encoder_hidden_shape, device=inputs_embeds.device, dtype=torch.long ) encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask) else: encoder_extended_attention_mask = None # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.num_layers) cross_attn_head_mask = self.get_head_mask(cross_attn_head_mask, self.config.num_layers) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None all_cross_attentions = () if (output_attentions and self.is_decoder) else None position_bias = None encoder_decoder_position_bias = None hidden_states = self.dropout(inputs_embeds) for i, layer_module in enumerate(self.block): layer_head_mask = head_mask[i] cross_attn_layer_head_mask = cross_attn_head_mask[i] # Model parallel if self.model_parallel: torch.cuda.set_device(hidden_states.device) # Ensure that attention_mask is always on the same device as hidden_states if causal_mask is not None: causal_mask = causal_mask.to(hidden_states.device) if position_bias is not None: position_bias = position_bias.to(hidden_states.device) if encoder_hidden_states is not None: encoder_hidden_states = encoder_hidden_states.to(hidden_states.device) if encoder_extended_attention_mask is not None: encoder_extended_attention_mask = encoder_extended_attention_mask.to(hidden_states.device) if encoder_decoder_position_bias is not None: encoder_decoder_position_bias = encoder_decoder_position_bias.to(hidden_states.device) if layer_head_mask is not None: layer_head_mask = layer_head_mask.to(hidden_states.device) if cross_attn_layer_head_mask is not None: cross_attn_layer_head_mask = cross_attn_layer_head_mask.to(hidden_states.device) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_outputs = layer_module( hidden_states, causal_mask, position_bias, encoder_hidden_states, encoder_extended_attention_mask, encoder_decoder_position_bias, # as a positional argument for gradient checkpointing layer_head_mask=layer_head_mask, cross_attn_layer_head_mask=cross_attn_layer_head_mask, past_key_value=past_key_values, use_cache=use_cache, output_attentions=output_attentions, return_dict=return_dict, cache_position=cache_position, ) hidden_states = layer_outputs[0] # We share the position biases between the layers - the first layer store them # layer_outputs = hidden-states, key-value-states (self-attention position bias), (self-attention weights), # (cross-attention position bias), (cross-attention weights) position_bias = layer_outputs[1] if self.is_decoder and encoder_hidden_states is not None: encoder_decoder_position_bias = layer_outputs[3 if output_attentions else 2] if output_attentions: all_attentions = all_attentions + (layer_outputs[2],) if self.is_decoder: all_cross_attentions = all_cross_attentions + (layer_outputs[4],) # Model Parallel: If it's the last layer for that device, put things on the next device if self.model_parallel: for k, v in self.device_map.items(): if i == v[-1] and "cuda:" + str(k) != self.last_device: hidden_states = hidden_states.to("cuda:" + str(k + 1)) hidden_states = self.final_layer_norm(hidden_states) hidden_states = self.dropout(hidden_states) # Add last layer if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if not return_dict: return tuple( v for v in [ hidden_states, past_key_values, all_hidden_states, all_attentions, all_cross_attentions, ] if v is not None ) return BaseModelOutputWithPastAndCrossAttentions( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_attentions, cross_attentions=all_cross_attentions, ) # Copied from transformers.models.gptj.modeling_gptj.GPTJModel._update_causal_mask def _update_causal_mask( self, attention_mask: Union[torch.Tensor, "BlockMask"], input_tensor: torch.Tensor, cache_position: torch.Tensor, past_key_values: Cache, output_attentions: bool = False, ): if self.config._attn_implementation == "flash_attention_2": if attention_mask is not None and (attention_mask == 0.0).any(): return attention_mask return None if self.config._attn_implementation == "flex_attention": if isinstance(attention_mask, torch.Tensor): attention_mask = make_flex_block_causal_mask(attention_mask) return attention_mask # For SDPA, when possible, we will rely on its `is_causal` argument instead of its `attn_mask` argument, in # order to dispatch on Flash Attention 2. This feature is not compatible with static cache, as SDPA will fail # to infer the attention mask. past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 using_compilable_cache = past_key_values.is_compileable if past_key_values is not None else False # When output attentions is True, sdpa implementation's forward method calls the eager implementation's forward if self.config._attn_implementation == "sdpa" and not using_compilable_cache and not output_attentions: if AttentionMaskConverter._ignore_causal_mask_sdpa( attention_mask, inputs_embeds=input_tensor, past_key_values_length=past_seen_tokens, is_training=self.training, ): return None dtype = input_tensor.dtype sequence_length = input_tensor.shape[1] if using_compilable_cache: target_length = past_key_values.get_max_cache_shape() else: target_length = ( attention_mask.shape[-1] if isinstance(attention_mask, torch.Tensor) else past_seen_tokens + sequence_length + 1 ) # In case the provided `attention` mask is 2D, we generate a causal mask here (4D). causal_mask = self._prepare_4d_causal_attention_mask_with_cache_position( attention_mask, sequence_length=sequence_length, target_length=target_length, dtype=dtype, cache_position=cache_position, batch_size=input_tensor.shape[0], ) if ( self.config._attn_implementation == "sdpa" and attention_mask is not None and attention_mask.device.type in ["cuda", "xpu", "npu"] and not output_attentions ): # Attend to all tokens in fully masked rows in the causal_mask, for example the relevant first rows when # using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path. # Details: https://github.com/pytorch/pytorch/issues/110213 min_dtype = torch.finfo(dtype).min causal_mask = AttentionMaskConverter._unmask_unattended(causal_mask, min_dtype) return causal_mask @staticmethod # Copied from transformers.models.gptj.modeling_gptj.GPTJModel._prepare_4d_causal_attention_mask_with_cache_position def _prepare_4d_causal_attention_mask_with_cache_position( attention_mask: torch.Tensor, sequence_length: int, target_length: int, dtype: torch.dtype, cache_position: torch.Tensor, batch_size: int, **kwargs, ): """ Creates a causal 4D mask of shape `(batch_size, 1, query_length, key_value_length)` from a 2D mask of shape `(batch_size, key_value_length)`, or if the input `attention_mask` is already 4D, do nothing. Args: attention_mask (`torch.Tensor`): A 2D attention mask of shape `(batch_size, key_value_length)` or a 4D attention mask of shape `(batch_size, 1, query_length, key_value_length)`. sequence_length (`int`): The sequence length being processed. target_length (`int`): The target length: when generating with static cache, the mask should be as long as the static cache, to account for the 0 padding, the part of the cache that is not filled yet. dtype (`torch.dtype`): The dtype to use for the 4D attention mask. cache_position (`torch.Tensor`): Indices depicting the position of the input sequence tokens in the sequence. batch_size (`torch.Tensor`): Batch size. """ if attention_mask is not None and attention_mask.dim() == 4: # In this case we assume that the mask comes already in inverted form and requires no inversion or slicing. causal_mask = attention_mask else: min_dtype = torch.finfo(dtype).min causal_mask = torch.full( (sequence_length, target_length), fill_value=min_dtype, dtype=dtype, device=cache_position.device ) if sequence_length != 1: causal_mask = torch.triu(causal_mask, diagonal=1) causal_mask *= torch.arange(target_length, device=cache_position.device) > cache_position.reshape(-1, 1) causal_mask = causal_mask[None, None, :, :].expand(batch_size, 1, -1, -1) if attention_mask is not None: causal_mask = causal_mask.clone() # copy to contiguous memory for in-place edit mask_length = attention_mask.shape[-1] padding_mask = causal_mask[:, :, :, :mask_length] + attention_mask[:, None, None, :].to( causal_mask.device ) padding_mask = padding_mask == 0 causal_mask[:, :, :, :mask_length] = causal_mask[:, :, :, :mask_length].masked_fill( padding_mask, min_dtype ) return causal_mask # Warning message for FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask __HEAD_MASK_WARNING_MSG = """ The input argument `head_mask` was split into two arguments `head_mask` and `decoder_head_mask`. Currently, `decoder_head_mask` is set to copy `head_mask`, but this feature is deprecated and will be removed in future versions. If you do not want to use any `decoder_head_mask` now, please set `decoder_head_mask = torch.ones(num_layers, num_heads)`. """ @auto_docstring class T5Model(T5PreTrainedModel): _keys_to_ignore_on_load_unexpected = [ "decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", ] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: T5Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.tie_encoder_decoder = False self.encoder = T5Stack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.tie_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = T5Stack(decoder_config, self.shared) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`T5Model.parallelize` is deprecated and will be removed in v5 of Transformers, you should load your model" " with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" " `device_map` but it needs to be a dictionary module_name to device, so for instance {'encoder.block.0':" " 0, 'encoder.block.1': 1, ...}", FutureWarning, ) self.device_map = ( get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.encoder.block)) self.encoder.parallelize(self.device_map) self.decoder.parallelize(self.device_map) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.encoder.deparallelize() self.decoder.deparallelize() self.encoder = self.encoder.to("cpu") self.decoder = self.decoder.to("cpu") self.model_parallel = False self.device_map = None torch.cuda.empty_cache() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[tuple[tuple[torch.FloatTensor]]] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.Tensor] = None, decoder_inputs_embeds: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[tuple[torch.FloatTensor], Seq2SeqModelOutput]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 Training](./t5#training). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. Example: ```python >>> from transformers import AutoTokenizer, T5Model >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") >>> model = T5Model.from_pretrained("google-t5/t5-small") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> decoder_input_ids = tokenizer("Studies show that", return_tensors="pt").input_ids # Batch size 1 >>> # preprocess: Prepend decoder_input_ids with start token which is pad token for T5Model. >>> # This is not needed for torch's T5ForConditionalGeneration as it does this internally using labels arg. >>> decoder_input_ids = model._shift_right(decoder_input_ids) >>> # forward pass >>> outputs = model(input_ids=input_ids, decoder_input_ids=decoder_input_ids) >>> last_hidden_states = outputs.last_hidden_state ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.decoder.first_device) hidden_states = hidden_states.to(self.decoder.first_device) if decoder_input_ids is not None: decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) if attention_mask is not None: attention_mask = attention_mask.to(self.decoder.first_device) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) if not return_dict: return decoder_outputs + encoder_outputs return Seq2SeqModelOutput( last_hidden_state=decoder_outputs.last_hidden_state, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) @auto_docstring( custom_intro=""" T5 Model with a `language modeling` head on top. """ ) class T5ForConditionalGeneration(T5PreTrainedModel, GenerationMixin): _keys_to_ignore_on_load_unexpected = [ "decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight", ] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight", "lm_head.weight"] def __init__(self, config: T5Config): super().__init__(config) self.model_dim = config.d_model self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.tie_encoder_decoder = False self.encoder = T5Stack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.tie_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = T5Stack(decoder_config, self.shared) self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`T5ForConditionalGeneration.parallelize` is deprecated and will be removed in v5 of Transformers, you" " should load your model with `device_map='balanced'` in the call to `from_pretrained`. You can also" " provide your own `device_map` but it needs to be a dictionary module_name to device, so for instance" " {'encoder.block.0': 0, 'encoder.block.1': 1, ...}", FutureWarning, ) self.device_map = ( get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.encoder.block)) self.encoder.parallelize(self.device_map) self.decoder.parallelize(self.device_map) self.lm_head = self.lm_head.to(self.decoder.first_device) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.encoder.deparallelize() self.decoder.deparallelize() self.encoder = self.encoder.to("cpu") self.decoder = self.decoder.to("cpu") self.lm_head = self.lm_head.to("cpu") self.model_parallel = False self.device_map = None torch.cuda.empty_cache() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[tuple[tuple[torch.Tensor]]] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, ) -> Union[tuple[torch.FloatTensor], Seq2SeqLMOutput]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 Training](./t5#training). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[-100, 0, ..., config.vocab_size - 1]`. All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Examples: ```python >>> from transformers import AutoTokenizer, T5ForConditionalGeneration >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") >>> model = T5ForConditionalGeneration.from_pretrained("google-t5/t5-small") >>> # training >>> input_ids = tokenizer("The walks in park", return_tensors="pt").input_ids >>> labels = tokenizer(" cute dog the ", return_tensors="pt").input_ids >>> outputs = model(input_ids=input_ids, labels=labels) >>> loss = outputs.loss >>> logits = outputs.logits >>> # inference >>> input_ids = tokenizer( ... "summarize: studies have shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> outputs = model.generate(input_ids) >>> print(tokenizer.decode(outputs[0], skip_special_tokens=True)) >>> # studies have shown that owning a dog is good for you. ```""" use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: # Convert encoder inputs in embeddings if needed encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] if self.model_parallel: torch.cuda.set_device(self.decoder.first_device) if labels is not None and decoder_input_ids is None and decoder_inputs_embeds is None: # get decoder inputs from shifting lm labels to the right decoder_input_ids = self._shift_right(labels) # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.decoder.first_device) hidden_states = hidden_states.to(self.decoder.first_device) if decoder_input_ids is not None: decoder_input_ids = decoder_input_ids.to(self.decoder.first_device) if attention_mask is not None: attention_mask = attention_mask.to(self.decoder.first_device) if decoder_attention_mask is not None: decoder_attention_mask = decoder_attention_mask.to(self.decoder.first_device) # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=past_key_values, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) sequence_output = decoder_outputs[0] # Set device for model parallelism if self.model_parallel: torch.cuda.set_device(self.encoder.first_device) self.lm_head = self.lm_head.to(self.encoder.first_device) sequence_output = sequence_output.to(self.lm_head.weight.device) if self.config.tie_word_embeddings: # Rescale output before projecting on vocab # See https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/transformer/transformer.py#L586 sequence_output = sequence_output * (self.model_dim**-0.5) lm_logits = self.lm_head(sequence_output) loss = None if labels is not None: loss_fct = CrossEntropyLoss(ignore_index=-100) # move labels to correct device to enable PP labels = labels.to(lm_logits.device) loss = loss_fct(lm_logits.view(-1, lm_logits.size(-1)), labels.view(-1)) # TODO(thom): Add z_loss https://github.com/tensorflow/mesh/blob/fa19d69eafc9a482aff0b59ddd96b025c0cb207d/mesh_tensorflow/layers.py#L666 if not return_dict: output = (lm_logits,) + decoder_outputs[1:] + encoder_outputs return ((loss,) + output) if loss is not None else output return Seq2SeqLMOutput( loss=loss, logits=lm_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) def prepare_decoder_input_ids_from_labels(self, labels: torch.Tensor): return self._shift_right(labels) @auto_docstring class T5EncoderModel(T5PreTrainedModel): _tied_weights_keys = ["encoder.embed_tokens.weight"] _keys_to_ignore_on_load_unexpected = [r"decoder"] def __init__(self, config: T5Config): super().__init__(config) self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = config encoder_config.use_cache = False encoder_config.is_encoder_decoder = False self.encoder = T5Stack(encoder_config, self.shared) # Initialize weights and apply final processing self.post_init() # Model parallel self.model_parallel = False self.device_map = None @add_start_docstrings(PARALLELIZE_DOCSTRING) def parallelize(self, device_map=None): warnings.warn( "`T5EncoderModel.parallelize` is deprecated and will be removed in v5 of Transformers, you should load" " your model with `device_map='balanced'` in the call to `from_pretrained`. You can also provide your own" " `device_map` but it needs to be a dictionary module_name to device, so for instance {'block.0': 0," " 'block.1': 1, ...}", FutureWarning, ) self.device_map = ( get_device_map(len(self.encoder.block), range(torch.cuda.device_count())) if device_map is None else device_map ) assert_device_map(self.device_map, len(self.encoder.block)) self.encoder.parallelize(self.device_map) self.model_parallel = True @add_start_docstrings(DEPARALLELIZE_DOCSTRING) def deparallelize(self): warnings.warn( "Like `parallelize`, `deparallelize` is deprecated and will be removed in v5 of Transformers.", FutureWarning, ) self.encoder.deparallelize() self.encoder = self.encoder.to("cpu") self.model_parallel = False self.device_map = None torch.cuda.empty_cache() def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.block[layer].layer[0].SelfAttention.prune_heads(heads) @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple[torch.FloatTensor], BaseModelOutput]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). Example: ```python >>> from transformers import AutoTokenizer, T5EncoderModel >>> tokenizer = AutoTokenizer.from_pretrained("google-t5/t5-small") >>> model = T5EncoderModel.from_pretrained("google-t5/t5-small") >>> input_ids = tokenizer( ... "Studies have been shown that owning a dog is good for you", return_tensors="pt" ... ).input_ids # Batch size 1 >>> outputs = model(input_ids=input_ids) >>> last_hidden_states = outputs.last_hidden_state ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) return encoder_outputs @auto_docstring( custom_intro=""" T5 model with a sequence classification/head on top (a linear layer on top of the pooled output) e.g. for GLUE tasks. """ ) class T5ForSequenceClassification(T5PreTrainedModel): _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: T5Config): super().__init__(config) self.transformer = T5Model(config) self.classification_head = T5ClassificationHead(config) # Initialize weights and apply final processing self.post_init() self.model_parallel = False @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.Tensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.LongTensor] = None, head_mask: Optional[torch.Tensor] = None, decoder_head_mask: Optional[torch.Tensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[list[torch.FloatTensor]] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, Seq2SeqSequenceClassifierOutput]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 Training](./t5#training). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict if labels is not None: use_cache = False if input_ids is None and inputs_embeds is not None: raise NotImplementedError( f"Passing input embeddings is currently not supported for {self.__class__.__name__}" ) # Copied from models.bart.modeling_bart.BartModel.forward different to other models, T5 automatically creates # decoder_input_ids from input_ids if no decoder_input_ids are provided if decoder_input_ids is None and decoder_inputs_embeds is None: if input_ids is None: raise ValueError( "If no `decoder_input_ids` or `decoder_inputs_embeds` are " "passed, `input_ids` cannot be `None`. Please pass either " "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." ) decoder_input_ids = self._shift_right(input_ids) outputs = self.transformer( input_ids, attention_mask=attention_mask, decoder_input_ids=decoder_input_ids, decoder_attention_mask=decoder_attention_mask, head_mask=head_mask, decoder_head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, encoder_outputs=encoder_outputs, inputs_embeds=inputs_embeds, decoder_inputs_embeds=decoder_inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = outputs[0] eos_mask = input_ids.eq(self.config.eos_token_id).to(sequence_output.device) if len(torch.unique_consecutive(eos_mask.sum(1))) > 1: raise ValueError("All examples must have the same number of tokens.") batch_size, _, hidden_size = sequence_output.shape sentence_representation = sequence_output[eos_mask, :].view(batch_size, -1, hidden_size)[:, -1, :] logits = self.classification_head(sentence_representation) loss = None if labels is not None: labels = labels.to(logits.device) if self.config.problem_type is None: if self.config.num_labels == 1: self.config.problem_type = "regression" elif self.config.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.config.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.config.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return Seq2SeqSequenceClassifierOutput( loss=loss, logits=logits, past_key_values=outputs.past_key_values, decoder_hidden_states=outputs.decoder_hidden_states, decoder_attentions=outputs.decoder_attentions, cross_attentions=outputs.cross_attentions, encoder_last_hidden_state=outputs.encoder_last_hidden_state, encoder_hidden_states=outputs.encoder_hidden_states, encoder_attentions=outputs.encoder_attentions, ) @auto_docstring class T5ForTokenClassification(T5PreTrainedModel): _tied_weights_keys = ["transformer.encoder.embed_tokens.weight"] def __init__(self, config: T5Config): super().__init__(config) self.num_labels = config.num_labels self.transformer = T5EncoderModel(config) self.dropout = nn.Dropout(config.classifier_dropout) self.classifier = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.Tensor] = None, attention_mask: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, inputs_embeds: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple[torch.Tensor], TokenClassifierOutput]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the token classification loss. Indices should be in `[0, ..., config.num_labels - 1]`. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.transformer( input_ids, attention_mask=attention_mask, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = outputs[0] hidden_states = self.dropout(hidden_states) logits = self.classifier(hidden_states) loss = None if labels is not None: loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) if not return_dict: output = (logits, outputs[2:-1]) return ((loss,) + output) if loss is not None else output return TokenClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) @auto_docstring class T5ForQuestionAnswering(T5PreTrainedModel): _keys_to_ignore_on_load_unexpected = ["decoder.block.0.layer.1.EncDecAttention.relative_attention_bias.weight"] _tied_weights_keys = ["encoder.embed_tokens.weight", "decoder.embed_tokens.weight"] def __init__(self, config: T5Config): super().__init__(config) self.model_dim = config.d_model self.shared = nn.Embedding(config.vocab_size, config.d_model) encoder_config = copy.deepcopy(config) encoder_config.is_decoder = False encoder_config.use_cache = False encoder_config.tie_encoder_decoder = False self.encoder = T5Stack(encoder_config, self.shared) decoder_config = copy.deepcopy(config) decoder_config.is_decoder = True decoder_config.tie_encoder_decoder = False decoder_config.num_layers = config.num_decoder_layers self.decoder = T5Stack(decoder_config, self.shared) self.num_labels = config.num_labels self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels) # Initialize weights and apply final processing self.post_init() self.model_parallel = False def get_input_embeddings(self): return self.shared def set_input_embeddings(self, new_embeddings): self.shared = new_embeddings self.encoder.set_input_embeddings(new_embeddings) self.decoder.set_input_embeddings(new_embeddings) def _tie_weights(self): if self.config.tie_word_embeddings: self._tie_or_clone_weights(self.encoder.embed_tokens, self.shared) self._tie_or_clone_weights(self.decoder.embed_tokens, self.shared) def get_encoder(self): return self.encoder def get_decoder(self): return self.decoder @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, attention_mask: Optional[torch.FloatTensor] = None, decoder_input_ids: Optional[torch.LongTensor] = None, decoder_attention_mask: Optional[torch.BoolTensor] = None, head_mask: Optional[torch.FloatTensor] = None, decoder_head_mask: Optional[torch.FloatTensor] = None, cross_attn_head_mask: Optional[torch.Tensor] = None, encoder_outputs: Optional[tuple[tuple[torch.Tensor]]] = None, start_positions: Optional[torch.LongTensor] = None, end_positions: Optional[torch.LongTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, decoder_inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple[torch.FloatTensor], Seq2SeqQuestionAnsweringModelOutput]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`): Indices of input sequence tokens in the vocabulary. T5 is a model with relative position embeddings so you should be able to pad the inputs on both the right and the left. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for detail. [What are input IDs?](../glossary#input-ids) To know more on how to prepare `input_ids` for pretraining take a look a [T5 Training](./t5#training). decoder_input_ids (`torch.LongTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Indices of decoder input sequence tokens in the vocabulary. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details. [What are decoder input IDs?](../glossary#decoder-input-ids) T5 uses the `pad_token_id` as the starting token for `decoder_input_ids` generation. If `past_key_values` is used, optionally only the last `decoder_input_ids` have to be input (see `past_key_values`). To know more on how to prepare `decoder_input_ids` for pretraining take a look at [T5 Training](./t5#training). decoder_attention_mask (`torch.BoolTensor` of shape `(batch_size, target_sequence_length)`, *optional*): Default behavior: generate a tensor that ignores pad tokens in `decoder_input_ids`. Causal mask will also be used by default. decoder_head_mask (`torch.FloatTensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the self-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. cross_attn_head_mask (`torch.Tensor` of shape `(num_heads,)` or `(num_layers, num_heads)`, *optional*): Mask to nullify selected heads of the cross-attention modules in the decoder. Mask values selected in `[0, 1]`: - 1 indicates the head is **not masked**, - 0 indicates the head is **masked**. """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict use_cache = use_cache if use_cache is not None else self.config.use_cache if start_positions is not None and end_positions is not None: use_cache = False # Copied from models.bart.modeling_bart.BartModel.forward # different to other models, T5 automatically creates decoder_input_ids from # input_ids if no decoder_input_ids are provided if decoder_input_ids is None and decoder_inputs_embeds is None: if input_ids is None: raise ValueError( "If no `decoder_input_ids` or `decoder_inputs_embeds` are " "passed, `input_ids` cannot be `None`. Please pass either " "`input_ids` or `decoder_input_ids` or `decoder_inputs_embeds`." ) decoder_input_ids = self._shift_right(input_ids) use_cache = use_cache if use_cache is not None else self.config.use_cache return_dict = return_dict if return_dict is not None else self.config.use_return_dict # FutureWarning: head_mask was separated into two input args - head_mask, decoder_head_mask if head_mask is not None and decoder_head_mask is None: if self.config.num_layers == self.config.num_decoder_layers: warnings.warn(__HEAD_MASK_WARNING_MSG, FutureWarning) decoder_head_mask = head_mask # Encode if needed (training, first prediction pass) if encoder_outputs is None: encoder_outputs = self.encoder( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) elif return_dict and not isinstance(encoder_outputs, BaseModelOutput): encoder_outputs = BaseModelOutput( last_hidden_state=encoder_outputs[0], hidden_states=encoder_outputs[1] if len(encoder_outputs) > 1 else None, attentions=encoder_outputs[2] if len(encoder_outputs) > 2 else None, ) hidden_states = encoder_outputs[0] # Decode decoder_outputs = self.decoder( input_ids=decoder_input_ids, attention_mask=decoder_attention_mask, inputs_embeds=decoder_inputs_embeds, past_key_values=None, encoder_hidden_states=hidden_states, encoder_attention_mask=attention_mask, head_mask=decoder_head_mask, cross_attn_head_mask=cross_attn_head_mask, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = decoder_outputs[0] logits = self.qa_outputs(sequence_output) start_logits, end_logits = logits.split(1, dim=-1) start_logits = start_logits.squeeze(-1).contiguous() end_logits = end_logits.squeeze(-1).contiguous() total_loss = None if start_positions is not None and end_positions is not None: # If we are on multi-GPU, split add a dimension if len(start_positions.size()) > 1: start_positions = start_positions.squeeze(-1).to(start_logits.device) if len(end_positions.size()) > 1: end_positions = end_positions.squeeze(-1).to(end_logits.device) # sometimes the start/end positions are outside our model inputs, we ignore these terms ignored_index = start_logits.size(1) start_positions = start_positions.clamp(0, ignored_index) end_positions = end_positions.clamp(0, ignored_index) loss_fct = CrossEntropyLoss(ignore_index=ignored_index) start_loss = loss_fct(start_logits, start_positions) end_loss = loss_fct(end_logits, end_positions) total_loss = (start_loss + end_loss) / 2 if not return_dict: output = (start_logits, end_logits) + decoder_outputs[1:] + encoder_outputs return ((total_loss,) + output) if total_loss is not None else output return Seq2SeqQuestionAnsweringModelOutput( loss=total_loss, start_logits=start_logits, end_logits=end_logits, past_key_values=decoder_outputs.past_key_values, decoder_hidden_states=decoder_outputs.hidden_states, decoder_attentions=decoder_outputs.attentions, cross_attentions=decoder_outputs.cross_attentions, encoder_last_hidden_state=encoder_outputs.last_hidden_state, encoder_hidden_states=encoder_outputs.hidden_states, encoder_attentions=encoder_outputs.attentions, ) __all__ = [ "T5EncoderModel", "T5ForConditionalGeneration", "T5Model", "T5PreTrainedModel", "load_tf_weights_in_t5", "T5ForQuestionAnswering", "T5ForSequenceClassification", "T5ForTokenClassification", ]