from __future__ import annotations from functools import reduce from operator import and_ from typing import TYPE_CHECKING, Any import duckdb from duckdb import StarExpression from narwhals._duckdb.utils import ( DeferredTimeZone, F, catch_duckdb_exception, col, evaluate_exprs, lit, native_to_narwhals_dtype, window_expression, ) from narwhals._sql.dataframe import SQLLazyFrame from narwhals._utils import ( Implementation, ValidateBackendVersion, Version, generate_temporary_column_name, not_implemented, parse_columns_to_drop, requires, ) from narwhals.dependencies import get_duckdb from narwhals.exceptions import InvalidOperationError if TYPE_CHECKING: from collections.abc import Iterator, Mapping, Sequence from io import BytesIO from pathlib import Path from types import ModuleType import pandas as pd import pyarrow as pa from duckdb import Expression from duckdb.typing import DuckDBPyType from typing_extensions import Self, TypeIs from narwhals._compliant.typing import CompliantDataFrameAny from narwhals._duckdb.expr import DuckDBExpr from narwhals._duckdb.group_by import DuckDBGroupBy from narwhals._duckdb.namespace import DuckDBNamespace from narwhals._duckdb.series import DuckDBInterchangeSeries from narwhals._utils import _LimitedContext from narwhals.dataframe import LazyFrame from narwhals.dtypes import DType from narwhals.stable.v1 import DataFrame as DataFrameV1 from narwhals.typing import AsofJoinStrategy, JoinStrategy, LazyUniqueKeepStrategy class DuckDBLazyFrame( SQLLazyFrame[ "DuckDBExpr", "duckdb.DuckDBPyRelation", "LazyFrame[duckdb.DuckDBPyRelation] | DataFrameV1[duckdb.DuckDBPyRelation]", ], ValidateBackendVersion, ): _implementation = Implementation.DUCKDB def __init__( self, df: duckdb.DuckDBPyRelation, *, version: Version, validate_backend_version: bool = False, ) -> None: self._native_frame: duckdb.DuckDBPyRelation = df self._version = version self._cached_native_schema: dict[str, DuckDBPyType] | None = None self._cached_columns: list[str] | None = None if validate_backend_version: self._validate_backend_version() @property def _backend_version(self) -> tuple[int, ...]: return self._implementation._backend_version() @staticmethod def _is_native(obj: duckdb.DuckDBPyRelation | Any) -> TypeIs[duckdb.DuckDBPyRelation]: return isinstance(obj, duckdb.DuckDBPyRelation) @classmethod def from_native( cls, data: duckdb.DuckDBPyRelation, /, *, context: _LimitedContext ) -> Self: return cls(data, version=context._version) def to_narwhals( self, *args: Any, **kwds: Any ) -> LazyFrame[duckdb.DuckDBPyRelation] | DataFrameV1[duckdb.DuckDBPyRelation]: if self._version is Version.V1: from narwhals.stable.v1 import DataFrame as DataFrameV1 return DataFrameV1(self, level="interchange") # type: ignore[no-any-return] return self._version.lazyframe(self, level="lazy") def __narwhals_dataframe__(self) -> Self: # pragma: no cover # Keep around for backcompat. if self._version is not Version.V1: msg = "__narwhals_dataframe__ is not implemented for DuckDBLazyFrame" raise AttributeError(msg) return self def __narwhals_lazyframe__(self) -> Self: return self def __native_namespace__(self) -> ModuleType: return get_duckdb() # type: ignore[no-any-return] def __narwhals_namespace__(self) -> DuckDBNamespace: from narwhals._duckdb.namespace import DuckDBNamespace return DuckDBNamespace(version=self._version) def get_column(self, name: str) -> DuckDBInterchangeSeries: from narwhals._duckdb.series import DuckDBInterchangeSeries return DuckDBInterchangeSeries(self.native.select(name), version=self._version) def _iter_columns(self) -> Iterator[Expression]: for name in self.columns: yield col(name) def collect( self, backend: ModuleType | Implementation | str | None, **kwargs: Any ) -> CompliantDataFrameAny: if backend is None or backend is Implementation.PYARROW: from narwhals._arrow.dataframe import ArrowDataFrame return ArrowDataFrame( self.native.arrow(), validate_backend_version=True, version=self._version, validate_column_names=True, ) if backend is Implementation.PANDAS: from narwhals._pandas_like.dataframe import PandasLikeDataFrame return PandasLikeDataFrame( self.native.df(), implementation=Implementation.PANDAS, validate_backend_version=True, version=self._version, validate_column_names=True, ) if backend is Implementation.POLARS: from narwhals._polars.dataframe import PolarsDataFrame return PolarsDataFrame( self.native.pl(), validate_backend_version=True, version=self._version ) msg = f"Unsupported `backend` value: {backend}" # pragma: no cover raise ValueError(msg) # pragma: no cover def head(self, n: int) -> Self: return self._with_native(self.native.limit(n)) def simple_select(self, *column_names: str) -> Self: return self._with_native(self.native.select(*column_names)) def aggregate(self, *exprs: DuckDBExpr) -> Self: selection = [val.alias(name) for name, val in evaluate_exprs(self, *exprs)] try: return self._with_native(self.native.aggregate(selection)) # type: ignore[arg-type] except Exception as e: # noqa: BLE001 raise catch_duckdb_exception(e, self) from None def select(self, *exprs: DuckDBExpr) -> Self: selection = (val.alias(name) for name, val in evaluate_exprs(self, *exprs)) try: return self._with_native(self.native.select(*selection)) except Exception as e: # noqa: BLE001 raise catch_duckdb_exception(e, self) from None def drop(self, columns: Sequence[str], *, strict: bool) -> Self: columns_to_drop = parse_columns_to_drop(self, columns, strict=strict) selection = (name for name in self.columns if name not in columns_to_drop) return self._with_native(self.native.select(*selection)) def lazy(self, *, backend: Implementation | None = None) -> Self: # The `backend`` argument has no effect but we keep it here for # backwards compatibility because in `narwhals.stable.v1` # function `.from_native()` will return a DataFrame for DuckDB. if backend is not None: # pragma: no cover msg = "`backend` argument is not supported for DuckDB" raise ValueError(msg) return self def with_columns(self, *exprs: DuckDBExpr) -> Self: new_columns_map = dict(evaluate_exprs(self, *exprs)) result = [ new_columns_map.pop(name).alias(name) if name in new_columns_map else col(name) for name in self.columns ] result.extend(value.alias(name) for name, value in new_columns_map.items()) try: return self._with_native(self.native.select(*result)) except Exception as e: # noqa: BLE001 raise catch_duckdb_exception(e, self) from None def filter(self, predicate: DuckDBExpr) -> Self: # `[0]` is safe as the predicate's expression only returns a single column mask = predicate(self)[0] try: return self._with_native(self.native.filter(mask)) except Exception as e: # noqa: BLE001 raise catch_duckdb_exception(e, self) from None @property def schema(self) -> dict[str, DType]: if self._cached_native_schema is None: # Note: prefer `self._cached_native_schema` over `functools.cached_property` # due to Python3.13 failures. self._cached_native_schema = dict(zip(self.columns, self.native.types)) deferred_time_zone = DeferredTimeZone(self.native) return { column_name: native_to_narwhals_dtype( duckdb_dtype, self._version, deferred_time_zone ) for column_name, duckdb_dtype in zip(self.native.columns, self.native.types) } @property def columns(self) -> list[str]: if self._cached_columns is None: self._cached_columns = ( list(self.schema) if self._cached_native_schema is not None else self.native.columns ) return self._cached_columns def to_pandas(self) -> pd.DataFrame: # only if version is v1, keep around for backcompat return self.native.df() def to_arrow(self) -> pa.Table: # only if version is v1, keep around for backcompat return self.native.arrow() def _with_version(self, version: Version) -> Self: return self.__class__(self.native, version=version) def _with_native(self, df: duckdb.DuckDBPyRelation) -> Self: return self.__class__(df, version=self._version) def group_by( self, keys: Sequence[str] | Sequence[DuckDBExpr], *, drop_null_keys: bool ) -> DuckDBGroupBy: from narwhals._duckdb.group_by import DuckDBGroupBy return DuckDBGroupBy(self, keys, drop_null_keys=drop_null_keys) def rename(self, mapping: Mapping[str, str]) -> Self: df = self.native selection = ( col(name).alias(mapping[name]) if name in mapping else col(name) for name in df.columns ) return self._with_native(self.native.select(*selection)) def join( self, other: Self, *, how: JoinStrategy, left_on: Sequence[str] | None, right_on: Sequence[str] | None, suffix: str, ) -> Self: native_how = "outer" if how == "full" else how if native_how == "cross": if self._backend_version < (1, 1, 4): msg = f"'duckdb>=1.1.4' is required for cross-join, found version: {self._backend_version}" raise NotImplementedError(msg) rel = self.native.set_alias("lhs").cross(other.native.set_alias("rhs")) else: # help mypy assert left_on is not None # noqa: S101 assert right_on is not None # noqa: S101 it = ( col(f'lhs."{left}"') == col(f'rhs."{right}"') for left, right in zip(left_on, right_on) ) condition: Expression = reduce(and_, it) rel = self.native.set_alias("lhs").join( other.native.set_alias("rhs"), # NOTE: Fixed in `--pre` https://github.com/duckdb/duckdb/pull/16933 condition=condition, # type: ignore[arg-type, unused-ignore] how=native_how, ) if native_how in {"inner", "left", "cross", "outer"}: select = [col(f'lhs."{x}"') for x in self.columns] for name in other.columns: col_in_lhs: bool = name in self.columns if native_how == "outer" and not col_in_lhs: select.append(col(f'rhs."{name}"')) elif (native_how == "outer") or ( col_in_lhs and (right_on is None or name not in right_on) ): select.append(col(f'rhs."{name}"').alias(f"{name}{suffix}")) elif right_on is None or name not in right_on: select.append(col(name)) res = rel.select(*select).set_alias(self.native.alias) else: # semi, anti res = rel.select("lhs.*").set_alias(self.native.alias) return self._with_native(res) def join_asof( self, other: Self, *, left_on: str, right_on: str, by_left: Sequence[str] | None, by_right: Sequence[str] | None, strategy: AsofJoinStrategy, suffix: str, ) -> Self: lhs = self.native rhs = other.native conditions: list[Expression] = [] if by_left is not None and by_right is not None: conditions.extend( col(f'lhs."{left}"') == col(f'rhs."{right}"') for left, right in zip(by_left, by_right) ) else: by_left = by_right = [] if strategy == "backward": conditions.append(col(f'lhs."{left_on}"') >= col(f'rhs."{right_on}"')) elif strategy == "forward": conditions.append(col(f'lhs."{left_on}"') <= col(f'rhs."{right_on}"')) else: msg = "Only 'backward' and 'forward' strategies are currently supported for DuckDB" raise NotImplementedError(msg) condition: Expression = reduce(and_, conditions) select = ["lhs.*"] for name in rhs.columns: if name in lhs.columns and ( right_on is None or name not in {right_on, *by_right} ): select.append(f'rhs."{name}" as "{name}{suffix}"') elif right_on is None or name not in {right_on, *by_right}: select.append(str(col(name))) # Replace with Python API call once # https://github.com/duckdb/duckdb/discussions/16947 is addressed. query = f""" SELECT {",".join(select)} FROM lhs ASOF LEFT JOIN rhs ON {condition} """ # noqa: S608 return self._with_native(duckdb.sql(query)) def collect_schema(self) -> dict[str, DType]: return self.schema def unique( self, subset: Sequence[str] | None, *, keep: LazyUniqueKeepStrategy ) -> Self: if subset_ := subset if keep == "any" else (subset or self.columns): # Sanitise input if error := self._check_columns_exist(subset_): raise error idx_name = generate_temporary_column_name(8, self.columns) count_name = generate_temporary_column_name(8, [*self.columns, idx_name]) name = count_name if keep == "none" else idx_name idx_expr = window_expression(F("row_number"), subset_).alias(idx_name) count_expr = window_expression( F("count", StarExpression()), subset_, () ).alias(count_name) return self._with_native( self.native.select(StarExpression(), idx_expr, count_expr) .filter(col(name) == lit(1)) .select(StarExpression(exclude=[count_name, idx_name])) ) return self._with_native(self.native.unique(", ".join(self.columns))) def sort(self, *by: str, descending: bool | Sequence[bool], nulls_last: bool) -> Self: if isinstance(descending, bool): descending = [descending] * len(by) if nulls_last: it = ( col(name).nulls_last() if not desc else col(name).desc().nulls_last() for name, desc in zip(by, descending) ) else: it = ( col(name).nulls_first() if not desc else col(name).desc().nulls_first() for name, desc in zip(by, descending) ) return self._with_native(self.native.sort(*it)) def drop_nulls(self, subset: Sequence[str] | None) -> Self: subset_ = subset if subset is not None else self.columns keep_condition = reduce(and_, (col(name).isnotnull() for name in subset_)) return self._with_native(self.native.filter(keep_condition)) def explode(self, columns: Sequence[str]) -> Self: dtypes = self._version.dtypes schema = self.collect_schema() for name in columns: dtype = schema[name] if dtype != dtypes.List: msg = ( f"`explode` operation not supported for dtype `{dtype}`, " "expected List type" ) raise InvalidOperationError(msg) if len(columns) != 1: msg = ( "Exploding on multiple columns is not supported with DuckDB backend since " "we cannot guarantee that the exploded columns have matching element counts." ) raise NotImplementedError(msg) col_to_explode = col(columns[0]) rel = self.native original_columns = self.columns not_null_condition = col_to_explode.isnotnull() & F("len", col_to_explode) > lit( 0 ) non_null_rel = rel.filter(not_null_condition).select( *( F("unnest", col_to_explode).alias(name) if name in columns else name for name in original_columns ) ) null_rel = rel.filter(~not_null_condition).select( *( lit(None).alias(name) if name in columns else name for name in original_columns ) ) return self._with_native(non_null_rel.union(null_rel)) def unpivot( self, on: Sequence[str] | None, index: Sequence[str] | None, variable_name: str, value_name: str, ) -> Self: index_ = [] if index is None else index on_ = [c for c in self.columns if c not in index_] if on is None else on if variable_name == "": msg = "`variable_name` cannot be empty string for duckdb backend." raise NotImplementedError(msg) if value_name == "": msg = "`value_name` cannot be empty string for duckdb backend." raise NotImplementedError(msg) unpivot_on = ", ".join(str(col(name)) for name in on_) rel = self.native # noqa: F841 # Replace with Python API once # https://github.com/duckdb/duckdb/discussions/16980 is addressed. query = f""" unpivot rel on {unpivot_on} into name "{variable_name}" value "{value_name}" """ return self._with_native( duckdb.sql(query).select(*[*index_, variable_name, value_name]) ) @requires.backend_version((1, 3)) def with_row_index(self, name: str, order_by: Sequence[str]) -> Self: if order_by is None: msg = "Cannot pass `order_by` to `with_row_index` for DuckDB" raise TypeError(msg) expr = (window_expression(F("row_number"), order_by=order_by) - lit(1)).alias( name ) return self._with_native(self.native.select(expr, StarExpression())) def sink_parquet(self, file: str | Path | BytesIO) -> None: df = self.native # noqa: F841 query = f""" COPY (SELECT * FROM df) TO '{file}' (FORMAT parquet) """ # noqa: S608 duckdb.sql(query) gather_every = not_implemented.deprecated( "`LazyFrame.gather_every` is deprecated and will be removed in a future version." ) tail = not_implemented.deprecated( "`LazyFrame.tail` is deprecated and will be removed in a future version." )