# coding=utf-8 # Copyright 2018 Salesforce and HuggingFace Inc. team. # Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """PyTorch CTRL model.""" from typing import Optional, Union import numpy as np import torch from torch import nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from ...cache_utils import Cache, DynamicCache from ...generation import GenerationMixin from ...modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast, SequenceClassifierOutput from ...modeling_utils import PreTrainedModel from ...pytorch_utils import Conv1D, find_pruneable_heads_and_indices, prune_linear_layer from ...utils import ( auto_docstring, logging, ) from .configuration_ctrl import CTRLConfig logger = logging.get_logger(__name__) def angle_defn(pos, i, d_model_size): angle_rates = 1 / torch.pow(10000, (2 * (i // 2)) / d_model_size) return pos * angle_rates def positional_encoding(position, d_model_size, dtype): # create the sinusoidal pattern for the positional encoding angle_rads = angle_defn( torch.arange(position, dtype=torch.int64).to(dtype).unsqueeze(1), torch.arange(d_model_size, dtype=torch.int64).to(dtype).unsqueeze(0), d_model_size, ) sines = torch.sin(angle_rads[:, 0::2]) cosines = torch.cos(angle_rads[:, 1::2]) pos_encoding = torch.cat([sines, cosines], dim=-1) return pos_encoding def scaled_dot_product_attention(q, k, v, mask, attention_mask=None, head_mask=None): # calculate attention matmul_qk = torch.matmul(q, k.permute(0, 1, 3, 2)) dk = k.shape[-1] scaled_attention_logits = matmul_qk / np.sqrt(dk) if mask is not None: nd, ns = scaled_attention_logits.size(-2), scaled_attention_logits.size(-1) scaled_attention_logits += mask[ns - nd : ns, :ns] * -1e4 if attention_mask is not None: # Apply the attention mask scaled_attention_logits = scaled_attention_logits + attention_mask attention_weights = torch.softmax(scaled_attention_logits, dim=-1) # Mask heads if we want to if head_mask is not None: attention_weights = attention_weights * head_mask output = torch.matmul(attention_weights, v) return output, attention_weights class MultiHeadAttention(nn.Module): def __init__(self, d_model_size, num_heads, layer_idx=None): super().__init__() self.num_heads = num_heads self.d_model_size = d_model_size self.layer_idx = layer_idx self.depth = int(d_model_size / self.num_heads) self.Wq = nn.Linear(d_model_size, d_model_size) self.Wk = nn.Linear(d_model_size, d_model_size) self.Wv = nn.Linear(d_model_size, d_model_size) self.dense = nn.Linear(d_model_size, d_model_size) self.pruned_heads = set() def prune_heads(self, heads): attention_head_size = self.d_model_size // self.num_heads if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices(heads, self.num_heads, attention_head_size, self.pruned_heads) # Prune linear layers self.Wq = prune_linear_layer(self.Wq, index) self.Wk = prune_linear_layer(self.Wk, index) self.Wv = prune_linear_layer(self.Wv, index) self.dense = prune_linear_layer(self.dense, index, dim=1) # Update hyper params self.num_heads = self.num_heads - len(heads) self.d_model_size = attention_head_size * self.num_heads self.pruned_heads = self.pruned_heads.union(heads) def split_into_heads(self, x, batch_size): x = x.reshape(batch_size, -1, self.num_heads, self.depth) return x.permute([0, 2, 1, 3]) def forward( self, v, k, q, mask, layer_past=None, attention_mask=None, head_mask=None, use_cache=False, output_attentions=False, cache_position=None, ): batch_size = q.shape[0] q = self.Wq(q) k = self.Wk(k) v = self.Wv(v) q = self.split_into_heads(q, batch_size) k = self.split_into_heads(k, batch_size) v = self.split_into_heads(v, batch_size) if layer_past is not None: k, v = layer_past.update(k, v, self.layer_idx, {"cache_position": cache_position}) output = scaled_dot_product_attention(q, k, v, mask, attention_mask, head_mask) scaled_attention = output[0].permute([0, 2, 1, 3]) attn = output[1] original_size_attention = scaled_attention.reshape(batch_size, -1, self.d_model_size) output = self.dense(original_size_attention) return output, attn def point_wise_feed_forward_network(d_model_size, dff): return nn.Sequential(nn.Linear(d_model_size, dff), nn.ReLU(), nn.Linear(dff, d_model_size)) class EncoderLayer(nn.Module): def __init__(self, d_model_size, num_heads, dff, rate=0.1, layer_idx=None): super().__init__() self.multi_head_attention = MultiHeadAttention(d_model_size, num_heads, layer_idx=layer_idx) self.ffn = point_wise_feed_forward_network(d_model_size, dff) self.layernorm1 = nn.LayerNorm(d_model_size, eps=1e-6) self.layernorm2 = nn.LayerNorm(d_model_size, eps=1e-6) self.dropout1 = nn.Dropout(rate) self.dropout2 = nn.Dropout(rate) def forward( self, x, mask, layer_past=None, attention_mask=None, head_mask=None, use_cache=False, output_attentions=False, cache_position=None, ): normed = self.layernorm1(x) attn_outputs = self.multi_head_attention( normed, normed, normed, mask, layer_past=layer_past, attention_mask=attention_mask, head_mask=head_mask, use_cache=use_cache, output_attentions=output_attentions, cache_position=cache_position, ) attn_output = attn_outputs[0] attn_output = self.dropout1(attn_output) out1 = x + attn_output out2 = self.layernorm2(out1) ffn_output = self.ffn(out2) ffn_output = self.dropout2(ffn_output) out2 = out1 + ffn_output outputs = (out2,) + attn_outputs[1:] return outputs @auto_docstring class CTRLPreTrainedModel(PreTrainedModel): config: CTRLConfig base_model_prefix = "transformer" def _init_weights(self, module): """Initialize the weights.""" if isinstance(module, (nn.Linear, Conv1D)): # Slightly different from the TF version which uses truncated_normal for initialization # cf https://github.com/pytorch/pytorch/pull/5617 module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=self.config.initializer_range) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) @auto_docstring class CTRLModel(CTRLPreTrainedModel): def __init__(self, config): super().__init__(config) self.d_model_size = config.n_embd self.num_layers = config.n_layer self.pos_encoding = positional_encoding(config.n_positions, self.d_model_size, torch.float) self.w = nn.Embedding(config.vocab_size, config.n_embd) self.dropout = nn.Dropout(config.embd_pdrop) self.h = nn.ModuleList( [ EncoderLayer(config.n_embd, config.n_head, config.dff, config.resid_pdrop, layer_idx=i) for i in range(config.n_layer) ] ) self.layernorm = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon) # Initialize weights and apply final processing self.post_init() def get_input_embeddings(self): return self.w def set_input_embeddings(self, new_embeddings): self.w = new_embeddings def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} """ for layer, heads in heads_to_prune.items(): self.h[layer].multi_head_attention.prune_heads(heads) @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.Tensor] = None, **kwargs, # NOOP kwargs, for now ) -> Union[tuple[torch.Tensor], BaseModelOutputWithPast]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0].shape[-2]` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only input IDs that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) Example: ```python >>> from transformers import AutoTokenizer, CTRLModel >>> import torch >>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl") >>> model = CTRLModel.from_pretrained("Salesforce/ctrl") >>> # CTRL was trained with control codes as the first token >>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt") >>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values() >>> outputs = model(**inputs) >>> last_hidden_states = outputs.last_hidden_state >>> list(last_hidden_states.shape) [1, 5, 1280] ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions use_cache = use_cache if use_cache is not None else self.config.use_cache output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict if input_ids is not None and inputs_embeds is not None: raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time") elif input_ids is not None: self.warn_if_padding_and_no_attention_mask(input_ids, attention_mask) input_shape = input_ids.size() input_ids = input_ids.view(-1, input_shape[-1]) batch_size = input_ids.shape[0] elif inputs_embeds is not None: input_shape = inputs_embeds.size()[:-1] batch_size = inputs_embeds.shape[0] else: raise ValueError("You have to specify either input_ids or inputs_embeds") device = input_ids.device if input_ids is not None else inputs_embeds.device return_legacy_cache = False if use_cache and not isinstance(past_key_values, Cache): logger.warning_once( "Passing a tuple of `past_key_values` is deprecated and will be removed in Transformers v4.58.0. " "You should pass an instance of `DynamicCache` instead, e.g. " "`past_key_values=DynamicCache.from_legacy_cache(past_key_values)`." ) return_legacy_cache = True past_key_values = DynamicCache.from_legacy_cache(past_key_values) past_length = past_key_values.get_seq_length() if past_key_values is not None else 0 if position_ids is None: position_ids = torch.arange(past_length, input_shape[-1] + past_length, dtype=torch.long, device=device) position_ids = position_ids.unsqueeze(0) # Attention mask. if attention_mask is not None: if batch_size <= 0: raise ValueError("batch_size has to be defined and > 0") attention_mask = attention_mask.view(batch_size, -1) # We create a 3D attention mask from a 2D tensor mask. # Sizes are [batch_size, 1, 1, to_seq_length] # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] # this attention mask is more simple than the triangular masking of causal attention # used in OpenAI GPT, we just need to prepare the broadcast dimension here. attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and the dtype's smallest value for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. attention_mask = attention_mask.to(dtype=self.dtype) # fp16 compatibility attention_mask = (1.0 - attention_mask) * torch.finfo(self.dtype).min # Prepare head mask if needed head_mask = self.get_head_mask(head_mask, self.config.n_layer) if token_type_ids is not None: token_type_ids = token_type_ids.view(-1, input_shape[-1]) token_type_embeds = self.w(token_type_ids) token_type_embeds *= np.sqrt(self.d_model_size) else: token_type_embeds = 0 if inputs_embeds is None: inputs_embeds = self.w(input_ids) # inputs_embeds = embedded.unsqueeze(0) if len(input_ids.shape)<2 else embedded seq_len = input_shape[-1] mask = torch.triu(torch.ones(seq_len + past_length, seq_len + past_length), 1).to(device) inputs_embeds *= np.sqrt(self.d_model_size) # `self.pos_encoding` won't be sent to the correct device along the model, so we do it manually. self.pos_encoding = self.pos_encoding.to(device) pos_embeds = self.pos_encoding[position_ids, :] hidden_states = inputs_embeds + pos_embeds + token_type_embeds hidden_states = self.dropout(hidden_states) all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, h in enumerate(self.h): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) outputs = h( hidden_states, mask, layer_past=past_key_values, attention_mask=attention_mask, head_mask=head_mask[i], use_cache=use_cache, output_attentions=output_attentions, cache_position=cache_position, ) hidden_states = outputs[0] if output_attentions: all_attentions += (outputs[1],) hidden_states = self.layernorm(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) if return_legacy_cache: past_key_values = past_key_values.to_legacy_cache() if not return_dict: return tuple( v for v in [hidden_states, past_key_values, all_hidden_states, all_attentions] if v is not None ) return BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, hidden_states=all_hidden_states, attentions=all_attentions, ) @auto_docstring( custom_intro=""" The CTRL Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings). """ ) class CTRLLMHeadModel(CTRLPreTrainedModel, GenerationMixin): _tied_weights_keys = ["lm_head.weight"] def __init__(self, config): super().__init__(config) self.transformer = CTRLModel(config) self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=True) # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.Tensor] = None, **kwargs, ) -> Union[tuple[torch.Tensor], CausalLMOutputWithPast]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0].shape[-2]` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only input IDs that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for language modeling. Note that the labels **are shifted** inside the model, i.e. you can set `labels = input_ids` Indices are selected in `[-100, 0, ..., config.vocab_size]` All labels set to `-100` are ignored (masked), the loss is only computed for labels in `[0, ..., config.vocab_size]` Example: ```python >>> import torch >>> from transformers import AutoTokenizer, CTRLLMHeadModel >>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl") >>> model = CTRLLMHeadModel.from_pretrained("Salesforce/ctrl") >>> # CTRL was trained with control codes as the first token >>> inputs = tokenizer("Wikipedia The llama is", return_tensors="pt") >>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values() >>> sequence_ids = model.generate(inputs["input_ids"]) >>> sequences = tokenizer.batch_decode(sequence_ids) >>> sequences ['Wikipedia The llama is a member of the family Bovidae. It is native to the Andes of Peru,'] >>> outputs = model(**inputs, labels=inputs["input_ids"]) >>> round(outputs.loss.item(), 2) 9.21 >>> list(outputs.logits.shape) [1, 5, 246534] ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, cache_position=cache_position, ) hidden_states = transformer_outputs[0] lm_logits = self.lm_head(hidden_states) loss = None if labels is not None: loss = self.loss_function( lm_logits, labels, vocab_size=self.config.vocab_size, **kwargs, ) if not return_dict: output = (lm_logits,) + transformer_outputs[1:] return ((loss,) + output) if loss is not None else output return CausalLMOutputWithPast( loss=loss, logits=lm_logits, past_key_values=transformer_outputs.past_key_values, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) def prepare_inputs_for_generation(self, input_ids, past_key_values=None, use_cache=None, **kwargs): # Overwritten -- inputs_embeds not working properly # only last tokens for inputs_ids if past is defined in kwargs if past_key_values is not None: past_length = past_key_values.get_seq_length() # Some generation methods already pass only the last input ID if input_ids.shape[1] > past_length: remove_prefix_length = past_length else: # Default to old behavior: keep only final ID remove_prefix_length = input_ids.shape[1] - 1 input_ids = input_ids[:, remove_prefix_length:] return {"input_ids": input_ids, "past_key_values": past_key_values, "use_cache": use_cache} @auto_docstring( custom_intro=""" The CTRL Model transformer with a sequence classification head on top (linear layer). [`CTRLForSequenceClassification`] uses the last token in order to do the classification, as other causal models (e.g. GPT-2) do. Since it does classification on the last token, it requires to know the position of the last token. If a `pad_token_id` is defined in the configuration, it finds the last token that is not a padding token in each row. If no `pad_token_id` is defined, it simply takes the last value in each row of the batch. Since it cannot guess the padding tokens when `inputs_embeds` are passed instead of `input_ids`, it does the same (take the last value in each row of the batch). """ ) class CTRLForSequenceClassification(CTRLPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.transformer = CTRLModel(config) self.classifier = nn.Linear(config.n_embd, self.num_labels, bias=False) # Initialize weights and apply final processing self.post_init() @auto_docstring def forward( self, input_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None, attention_mask: Optional[torch.FloatTensor] = None, token_type_ids: Optional[torch.LongTensor] = None, position_ids: Optional[torch.LongTensor] = None, head_mask: Optional[torch.FloatTensor] = None, inputs_embeds: Optional[torch.FloatTensor] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple[torch.Tensor], SequenceClassifierOutput]: r""" input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`): `input_ids_length` = `sequence_length` if `past_key_values` is `None` else `past_key_values[0].shape[-2]` (`sequence_length` of input past key value states). Indices of input sequence tokens in the vocabulary. If `past_key_values` is used, only input IDs that do not have their past calculated should be passed as `input_ids`. Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.__call__`] and [`PreTrainedTokenizer.encode`] for details. [What are input IDs?](../glossary#input-ids) labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the sequence classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). Example of single-label classification: ```python >>> import torch >>> from transformers import AutoTokenizer, CTRLForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl") >>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl") >>> # CTRL was trained with control codes as the first token >>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt") >>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values() >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_id = logits.argmax().item() >>> model.config.id2label[predicted_class_id] 'LABEL_0' ``` ```python >>> import torch >>> torch.manual_seed(42) # doctest: +IGNORE_RESULT >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl", num_labels=num_labels) >>> labels = torch.tensor(1) >>> loss = model(**inputs, labels=labels).loss >>> round(loss.item(), 2) 0.93 ``` Example of multi-label classification: ```python >>> import torch >>> from transformers import AutoTokenizer, CTRLForSequenceClassification >>> tokenizer = AutoTokenizer.from_pretrained("Salesforce/ctrl") >>> model = CTRLForSequenceClassification.from_pretrained( ... "Salesforce/ctrl", problem_type="multi_label_classification" ... ) >>> # CTRL was trained with control codes as the first token >>> inputs = tokenizer("Opinion My dog is cute", return_tensors="pt") >>> assert inputs["input_ids"][0, 0].item() in tokenizer.control_codes.values() >>> with torch.no_grad(): ... logits = model(**inputs).logits >>> predicted_class_id = logits.argmax().item() >>> model.config.id2label[predicted_class_id] 'LABEL_0' ``` ```python >>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)` >>> num_labels = len(model.config.id2label) >>> model = CTRLForSequenceClassification.from_pretrained("Salesforce/ctrl", num_labels=num_labels) >>> num_labels = len(model.config.id2label) >>> labels = torch.nn.functional.one_hot(torch.tensor([predicted_class_id]), num_classes=num_labels).to( ... torch.float ... ) >>> loss = model(**inputs, labels=labels).loss >>> loss.backward() # doctest: +IGNORE_RESULT ```""" return_dict = return_dict if return_dict is not None else self.config.use_return_dict transformer_outputs = self.transformer( input_ids, past_key_values=past_key_values, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) hidden_states = transformer_outputs[0] logits = self.classifier(hidden_states) if input_ids is not None: batch_size, sequence_length = input_ids.shape[:2] else: batch_size, sequence_length = inputs_embeds.shape[:2] if self.config.pad_token_id is None and batch_size != 1: raise ValueError("Cannot handle batch sizes > 1 if no padding token is defined.") if self.config.pad_token_id is None: last_non_pad_token = -1 elif input_ids is not None: # To handle both left- and right- padding, we take the rightmost token that is not equal to pad_token_id non_pad_mask = (input_ids != self.config.pad_token_id).to(logits.device, torch.int32) token_indices = torch.arange(input_ids.shape[-1], device=logits.device, dtype=torch.int32) last_non_pad_token = (token_indices * non_pad_mask).argmax(-1) else: last_non_pad_token = -1 logger.warning_once( f"{self.__class__.__name__} will not detect padding tokens in `inputs_embeds`. Results may be " "unexpected if using padding tokens in conjunction with `inputs_embeds.`" ) pooled_logits = logits[torch.arange(batch_size, device=logits.device), last_non_pad_token] loss = None if labels is not None: if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(pooled_logits.squeeze(), labels.squeeze()) else: loss = loss_fct(pooled_logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(pooled_logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(pooled_logits, labels) if not return_dict: output = (pooled_logits,) + transformer_outputs[2:] return ((loss,) + output) if loss is not None else output return SequenceClassifierOutput( loss=loss, logits=pooled_logits, hidden_states=transformer_outputs.hidden_states, attentions=transformer_outputs.attentions, ) __all__ = ["CTRLForSequenceClassification", "CTRLLMHeadModel", "CTRLModel", "CTRLPreTrainedModel"]