# coding=utf-8 # Copyright 2024 HuggingFace Inc. team. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union import numpy as np from ...image_processing_utils import BatchFeature from ...image_utils import ImageInput from ...processing_utils import ImagesKwargs, MultiModalData, ProcessingKwargs, ProcessorMixin, TextKwargs, Unpack from ...tokenization_utils_base import PreTokenizedInput, TextInput from ...utils import is_vision_available if is_vision_available(): from .image_processing_emu3 import smart_resize class Emu3TextKwargs(TextKwargs, total=False): return_for_image_generation: bool class Emu3ImagesKwargs(ImagesKwargs, total=False): ratio: str image_area: int class Emu3ProcessorKwargs(ProcessingKwargs, total=False): text_kwargs: Emu3TextKwargs images_kwargs: Emu3ImagesKwargs _defaults = { "text_kwargs": { "return_for_image_generation": False, "return_mm_token_type_ids": False, }, "images_kwargs": { "ratio": "1:1", "image_area": 518400, }, } class Emu3Processor(ProcessorMixin): r""" Constructs a Emu3 processor which wraps a Emu3 image processor and a GPT2 tokenizer into a single processor. [`Emu3Processor`] offers all the functionalities of [`Emu3ImageProcessor`] and [`GPT2TokenizerFast`]. See the [`~Emu3Processor.__call__`] and [`~Emu3Processor.decode`] for more information. Args: image_processor ([`Emu3ImageProcessor`]): The image processor is a required input. tokenizer ([`Emu3TokenizerFast`]): The tokenizer is a required input. chat_template (`str`, *optional*): A Jinja template which will be used to convert lists of messages in a chat into a tokenizable string. """ attributes = ["image_processor", "tokenizer"] tokenizer_class = ("GPT2Tokenizer", "GPT2TokenizerFast") image_processor_class = "Emu3ImageProcessor" def __init__( self, image_processor, tokenizer, chat_template=None, **kwargs, ): self.image_token = tokenizer.image_token # image_token as placeholder to be replaced by vq-vae tokens self.image_token_id = tokenizer.image_token_id self.image_start_token = tokenizer.boi_token # "<|image start|>" fixed tokens for start and end of image self.image_end_token = tokenizer.eoi_token # "<|image end|>" self.fake_token_around_image = tokenizer.image_wrapper_token # "<|image token|>" every image starts with it self.eof_token = tokenizer.eof_token # "<|extra_201|>" self.bos_token = tokenizer.bos_token self.downsample_ratio = 8 super().__init__(image_processor, tokenizer, chat_template=chat_template) def __call__( self, images: Optional[ImageInput] = None, text: Optional[Union[TextInput, PreTokenizedInput, list[TextInput], list[PreTokenizedInput]]] = None, audio=None, videos=None, **kwargs: Unpack[Emu3ProcessorKwargs], ) -> BatchFeature: """ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text` and `kwargs` arguments to Emu3TokenizerFast's [`~Emu3TokenizerFast.__call__`] if `text` is not `None` to encode the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the docstring of the above two methods for more information. Args: images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `list[PIL.Image.Image]`, `list[np.ndarray]`, `list[torch.Tensor]`): The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch tensor. Both channels-first and channels-last formats are supported. text (`str`, `list[str]`, `list[list[str]]`): The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set `is_split_into_words=True` (to lift the ambiguity with a batch of sequences). return_tensors (`str` or [`~utils.TensorType`], *optional*): If set, will return tensors of a particular framework. Acceptable values are: - `'tf'`: Return TensorFlow `tf.constant` objects. - `'pt'`: Return PyTorch `torch.Tensor` objects. - `'np'`: Return NumPy `np.ndarray` objects. - `'jax'`: Return JAX `jnp.ndarray` objects. Returns: [`BatchFeature`]: A [`BatchFeature`] with the following fields: - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not `None`). - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`. """ # check if images and text inputs are reversed for BC if isinstance(text, str): text = [text] elif not isinstance(text, list) and not isinstance(text[0], str): raise TypeError("Invalid input text. Please provide a string, or a list of strings") output_kwargs = self._merge_kwargs( Emu3ProcessorKwargs, tokenizer_init_kwargs=self.tokenizer.init_kwargs, **kwargs, ) return_for_image_generation = output_kwargs["text_kwargs"].pop("return_for_image_generation", False) ratio = output_kwargs["images_kwargs"].pop("ratio", None) image_area = output_kwargs["images_kwargs"].pop("image_area", None) if return_for_image_generation and images is not None: raise ValueError("You should not provide `images` when `return_for_image_generation=True`") if not return_for_image_generation and text is None and images is None: raise ValueError("You must provide either text or images when `return_for_image_generation=False`") image_features = {} image_start_tokens = f"{self.image_start_token}" image_end_tokens = f"{self.eof_token}{self.image_end_token}" # generate text from image + text input, so we add placeholders for image tokens if not return_for_image_generation and images is not None: image_features = self.image_processor(images, **output_kwargs["images_kwargs"]) image_sizes = iter(image_features.image_sizes) prompt_strings = [] for sample in text: while self.image_token in sample: image_size = next(image_sizes) height, width = image_size height = height // self.downsample_ratio width = width // self.downsample_ratio image_seq_length = height * (width + 1) # +1 for extra row when converting to BPE in modeling code image_placeholder = f"{image_start_tokens}{height}*{width}{self.fake_token_around_image}{'' * image_seq_length}{image_end_tokens}" sample = sample.replace(self.image_token, image_placeholder, 1) sample = f"{self.bos_token}{sample}" # add BOS because GPT tokenizer doesn't add it prompt_strings.append(sample) text = [sample.replace("", self.image_token) for sample in prompt_strings] # generate image from text input, so we add begin-of-image tokens from where image generation starts elif return_for_image_generation: height, width = self.calculate_generate_size(ratio, image_area, self.downsample_ratio) image_prompt = f"{image_start_tokens}{height}*{width}{self.fake_token_around_image}" text = [f"{self.bos_token}{sample}{image_prompt}" for sample in text] image_features["image_sizes"] = [[height, width]] * len(text) # else just generate from text-only input, and we do no special treatment for text return_tensors = output_kwargs["text_kwargs"].pop("return_tensors", None) return_mm_token_type_ids = output_kwargs["text_kwargs"].pop("return_mm_token_type_ids", False) text_inputs = self.tokenizer(text, **output_kwargs["text_kwargs"], return_tensors=None) self._check_special_mm_tokens(text, text_inputs, modalities=["image"]) if return_mm_token_type_ids: array_ids = np.array(text_inputs["input_ids"]) mm_token_type_ids = np.zeros_like(text_inputs["input_ids"]) mm_token_type_ids[array_ids == self.image_token_id] = 1 text_inputs["mm_token_type_ids"] = mm_token_type_ids.tolist() return BatchFeature(data={**text_inputs, **image_features}, tensor_type=return_tensors) def _get_num_multimodal_tokens(self, image_sizes=None, **kwargs): """ Computes the number of placeholder tokens needed for multimodal inputs with the given sizes. Args: image_sizes (`list[list[int]]`, *optional*): The input sizes formatted as (height, width) per each image. Returns: `MultiModalData`: A `MultiModalData` object holding number of tokens per each of the provided input modalities, along with other useful data. """ vision_data = {} if image_sizes is not None: num_image_tokens = [] for height, width in image_sizes: height, width = smart_resize( height, width, self.image_processor.spatial_factor, self.image_processor.min_pixels, self.image_processor.max_pixels, ) height = height // self.downsample_ratio width = width // self.downsample_ratio image_seq_length = height * (width + 1) # +1 for extra row when converting to BPE in modeling code num_image_tokens.append(image_seq_length) num_image_patches = [1] * len(image_sizes) vision_data.update({"num_image_tokens": num_image_tokens, "num_image_patches": num_image_patches}) return MultiModalData(**vision_data) def calculate_generate_size(self, ratio, image_area, spatial_factor): width, height = map(int, ratio.split(":")) current_area = width * height target_ratio = (image_area / current_area) ** 0.5 token_height = int(round(height * target_ratio / spatial_factor)) token_width = int(round(width * target_ratio / spatial_factor)) return token_height, token_width def postprocess(self, images: ImageInput, **kwargs): return self.image_processor.postprocess(images, **kwargs) def batch_decode(self, *args, **kwargs): """ This method forwards all its arguments to Emu3TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.batch_decode(*args, **kwargs) def decode(self, *args, **kwargs): """ This method forwards all its arguments to Emu3TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to the docstring of this method for more information. """ return self.tokenizer.decode(*args, **kwargs) @property def model_input_names(self): tokenizer_input_names = self.tokenizer.model_input_names image_processor_input_names = self.image_processor.model_input_names return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names)) __all__ = ["Emu3Processor"]