# coding=utf-8 # Copyright 2024 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tokenization class for model MyT5.""" import json import os import warnings from collections import defaultdict from typing import Optional, Union from ...tokenization_utils import AddedToken, PreTrainedTokenizer from ...utils import logging logger = logging.get_logger(__name__) VOCAB_FILES_NAMES = {"vocab_file": "byte_maps.json"} class ByteRewriter: """ Byte rewriter class for MyT5 tokenizer. This class is used to rewrite bytes using a hash tree. The hash tree is constructed from a set of rewriting rules. Args: rewriting_rules (`str` or `dict[str, str]`): A path to a json file containing the rewriting rules or a dictionary containing the rewriting rules. """ LEAF = "[LEAF]" def __init__(self, rewriting_rules: Union[str, dict[str, str]]): if isinstance(rewriting_rules, str): with open(rewriting_rules, "r") as f: rewriting_rules = json.load(f) elif not isinstance(rewriting_rules, dict): raise TypeError( f"rewriting_rules should be either a path to json file or a dict, got {type(rewriting_rules)}" ) self.hash_tree = self.construct_hash_tree(rewriting_rules) reverse_rewriting_rules = {v: k for k, v in rewriting_rules.items()} self.reverse_hash_tree = self.construct_hash_tree(reverse_rewriting_rules) def add_leaf(self, hash_tree: dict[str, Union[dict, list[str]]], byte_in_sequence: str, byte_out_sequence: str): """ Add a leaf with the output byte sequence to the hash tree. """ byte_in_list = byte_in_sequence.split(" ") byte_out_list = byte_out_sequence.split(" ") tree_pointer = hash_tree for b in byte_in_list: if b not in tree_pointer: tree_pointer[b] = {} tree_pointer = tree_pointer[b] tree_pointer[self.LEAF] = byte_out_list def construct_hash_tree(self, rewriting_rules: dict[str, str]) -> dict[str, Union[dict, list[str]]]: """ Construct a hash tree for rewritten byte sequences. """ hash_tree = defaultdict(dict) for b in (f"{x:02x}" for x in range(256)): hash_tree[b][self.LEAF] = [b] for in_sequence, out_sequence in rewriting_rules.items(): self.add_leaf(hash_tree, in_sequence, out_sequence) return hash_tree def search_hash_tree(self, byte_sequence: list[str]) -> Union[None, list[str]]: """ Search the hash tree and return the rewritten byte sequence if found. """ tree_pointer = self.hash_tree for b in byte_sequence: if b in tree_pointer: tree_pointer = tree_pointer[b] else: return None return tree_pointer[self.LEAF] def rewrite_bytes(self, in_bytes: list[str], reverse=False) -> list[str]: """ Rewrite a sequence of bytes using the hash tree. Args: in_bytes (`list[str]`): A list of bytes to be rewritten. reverse (`bool`): If True, decoding is performed with the reverse hash tree. Returns: `list[str]`: The rewritten byte sequence. """ out_bytes = [] b_start = 0 b_end = 0 while b_start < len(in_bytes): tree_pointer = self.hash_tree if not reverse else self.reverse_hash_tree for j in range(b_start, len(in_bytes)): b = in_bytes[j] if b in tree_pointer: tree_pointer = tree_pointer[b] elif j == b_start: cur_leaf = [b] b_end = j break else: break if self.LEAF in tree_pointer: cur_leaf = tree_pointer[self.LEAF] b_end = j out_bytes.extend(cur_leaf) b_start = b_end + 1 return out_bytes class MyT5Tokenizer(PreTrainedTokenizer): """ Construct a MyT5 tokenizer. This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to this superclass for more information regarding those methods. Args: vocab_file (`str`): The file containing the byte rewriting rules. eos_token (`str`, *optional*, defaults to `""`): The end of sequence token. unk_token (`str`, *optional*, defaults to `""`): The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. pad_token (`str`, *optional*, defaults to `""`): The token used for padding, for example when batching sequences of different lengths. extra_ids (`int`, *optional*, defaults to 125): Add a number of extra ids added to the end of the vocabulary for use as sentinels. These tokens are accessible as "" where "{%d}" is a number between 0 and extra_ids-1. Extra tokens are indexed from the end of the vocabulary up to beginning ("" is the last token in the vocabulary like in ByT5 preprocessing see [here](https://github.com/google-research/text-to-text-transfer-transformer/blob/9fd7b14a769417be33bc6c850f9598764913c833/t5/data/preprocessors.py#L2117)). additional_special_tokens (`list[str]`, *optional*): Additional special tokens used by the tokenizer. """ model_input_names = ["input_ids", "attention_mask"] vocab_files_names = VOCAB_FILES_NAMES def __init__( self, vocab_file, eos_token="", unk_token="", pad_token="", extra_ids=125, additional_special_tokens=None, **kwargs, ) -> None: # Add extra_ids to the special token list if extra_ids > 0 and additional_special_tokens is None: additional_special_tokens = [f"" for i in range(extra_ids)] elif extra_ids > 0 and additional_special_tokens is not None and len(additional_special_tokens) > 0: # Check that we have the right number of extra_id special tokens extra_tokens = len(set(filter(lambda x: bool("extra_id" in str(x)), additional_special_tokens))) if extra_tokens != extra_ids: raise ValueError( f"Both extra_ids ({extra_ids}) and additional_special_tokens ({additional_special_tokens}) are" " provided to MyT5Tokenizer. In this case the additional_special_tokens must include the" " extra_ids tokens" ) pad_token = AddedToken(pad_token, lstrip=True, rstrip=True) if isinstance(pad_token, str) else pad_token eos_token = AddedToken(eos_token, lstrip=True, rstrip=True) if isinstance(eos_token, str) else eos_token unk_token = AddedToken(unk_token, lstrip=True, rstrip=True) if isinstance(unk_token, str) else unk_token # unk token needs to be in the vocab with correct index self._added_tokens_decoder = {0: pad_token, 1: eos_token, 2: unk_token} self.offset = len(self._added_tokens_decoder) self._utf_vocab_size = 2**8 # utf is 8 bits # Load byte maps self.byte_maps = json.load(open(vocab_file, "r")) self.decompose_rewriter = ByteRewriter(self.byte_maps["decompose_map"]) self.merge_rewriter = ByteRewriter(self.byte_maps["merge_map"]) super().__init__( eos_token=eos_token, unk_token=unk_token, pad_token=pad_token, extra_ids=0, additional_special_tokens=additional_special_tokens, **kwargs, ) @property def vocab_size(self): return self._utf_vocab_size # Copied from transformers.models.byt5.tokenization_byt5.ByT5Tokenizer.get_vocab def get_vocab(self): vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size + self.offset)} vocab.update(self.added_tokens_encoder) return vocab # Copied from transformers.models.byt5.tokenization_byt5.ByT5Tokenizer.get_special_tokens_mask def get_special_tokens_mask( self, token_ids_0: list[int], token_ids_1: Optional[list[int]] = None, already_has_special_tokens: bool = False ) -> list[int]: """ Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding special tokens using the tokenizer `prepare_for_model` method. Args: token_ids_0 (`list[int]`): List of IDs. token_ids_1 (`list[int]`, *optional*): Optional second list of IDs for sequence pairs. already_has_special_tokens (`bool`, *optional*, defaults to `False`): Whether or not the token list is already formatted with special tokens for the model. Returns: `list[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token. """ if already_has_special_tokens: return super().get_special_tokens_mask( token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True ) # normal case: some special tokens if token_ids_1 is None: return ([0] * len(token_ids_0)) + [1] return ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1] def _add_eos_if_not_present(self, token_ids: list[int]) -> list[int]: """Do not add eos again if user already added it.""" if len(token_ids) > 0 and token_ids[-1] == self.eos_token_id: warnings.warn( f"This sequence already has {self.eos_token}. In future versions this behavior may lead to duplicated" " eos tokens being added." ) return token_ids else: return token_ids + [self.eos_token_id] def create_token_type_ids_from_sequences( self, token_ids_0: list[int], token_ids_1: Optional[list[int]] = None ) -> list[int]: """ Create a mask from the two sequences passed to be used in a sequence-pair classification task. MyT5 does not make use of token type ids, therefore a list of zeros is returned. Args: token_ids_0 (`list[int]`): List of IDs. token_ids_1 (`list[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `list[int]`: List of zeros. """ eos = [self.eos_token_id] if token_ids_1 is None: return len(token_ids_0 + eos) * [0] return len(token_ids_0 + eos + token_ids_1 + eos) * [0] # Copied from transformers.models.byt5.tokenization_byt5.ByT5Tokenizer.build_inputs_with_special_tokens def build_inputs_with_special_tokens( self, token_ids_0: list[int], token_ids_1: Optional[list[int]] = None ) -> list[int]: """ Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A sequence has the following format: - single sequence: `X ` - pair of sequences: `A B ` Args: token_ids_0 (`list[int]`): List of IDs to which the special tokens will be added. token_ids_1 (`list[int]`, *optional*): Optional second list of IDs for sequence pairs. Returns: `list[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens. """ token_ids_0 = self._add_eos_if_not_present(token_ids_0) if token_ids_1 is None: return token_ids_0 else: token_ids_1 = self._add_eos_if_not_present(token_ids_1) return token_ids_0 + token_ids_1 def _tokenize(self, text: str, **kwargs) -> list[str]: """Take as input a string and return a list of strings (tokens) for words/sub-words. Represents tokens in two character hex format""" tokens = [f"{i:02x}" for i in text.encode("utf-8")] tokens = self.morphological_encode(tokens) return tokens def _convert_token_to_id(self, token): """Converts a token (str) in an id using the vocab.""" if len(token) != 2: token_id = None else: token_id = int(token, 16) + self.offset return token_id def _convert_id_to_token(self, index): """Converts an index (integer) in a token (str) using the vocab.""" token = f"{index - self.offset:02x}" return token def morphological_encode(self, indices: list[str]) -> list[str]: # Decompose and merge morphological sequences indices = self.decompose_rewriter.rewrite_bytes(indices, reverse=False) indices = self.merge_rewriter.rewrite_bytes(indices, reverse=False) return indices def morphological_decode(self, indices: list[str]) -> list[str]: # Demerge and compose morphological sequences indices = self.merge_rewriter.rewrite_bytes(indices, reverse=True) indices = self.decompose_rewriter.rewrite_bytes(indices, reverse=True) return indices def convert_tokens_to_string(self, tokens): """Converts a sequence of tokens (string) in a single string.""" bstring = b"" out_tokens = [] for token in tokens: if token in self.added_tokens_decoder: out_tokens.append(self.added_tokens_decoder[token]) elif token in self.added_tokens_encoder: out_tokens.append(token) else: out_tokens.append(token) out_tokens = self.morphological_decode(out_tokens) _added_tokens = set(self.added_tokens_decoder.values()) | set(self.added_tokens_encoder) for token in out_tokens: if token in _added_tokens: bstring += bytes(token, "utf-8") else: bstring += bytes.fromhex(token) string = bstring.decode("utf-8", errors="ignore") return string def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> tuple[str]: if os.path.isdir(save_directory): vocab_file = os.path.join( save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"] ) else: vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory with open(vocab_file, "w", encoding="utf-8") as writer: writer.write(json.dumps(self.byte_maps, indent=2, ensure_ascii=False)) return (vocab_file,) __all__ = ["MyT5Tokenizer"]