# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # This file was automatically generated from src/transformers/models/evolla/modular_evolla.py. # Do NOT edit this file manually as any edits will be overwritten by the generation of # the file from the modular. If any change should be done, please apply the change to the # modular_evolla.py file directly. One of our CI enforces this. # 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨 # coding=utf-8 # Copyright 2025 Westlake Representational Learning Lab (Fajie Yuan Lab) team and the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math import warnings from dataclasses import dataclass from typing import Callable, Optional, Union import torch from torch import Tensor, nn from ...activations import ACT2FN from ...cache_utils import Cache, DynamicCache from ...generation import GenerationMixin from ...integrations import use_kernel_forward_from_hub from ...masking_utils import create_causal_mask from ...modeling_flash_attention_utils import flash_attn_supports_top_left_mask, is_flash_attn_available from ...modeling_layers import GradientCheckpointingLayer from ...modeling_outputs import ( BaseModelOutputWithCrossAttentions, BaseModelOutputWithPast, BaseModelOutputWithPoolingAndCrossAttentions, CausalLMOutputWithPast, ModelOutput, ) from ...modeling_rope_utils import ROPE_INIT_FUNCTIONS, dynamic_rope_update from ...modeling_utils import ( ALL_ATTENTION_FUNCTIONS, ModuleUtilsMixin, PreTrainedModel, find_pruneable_heads_and_indices, get_parameter_dtype, prune_linear_layer, ) from ...processing_utils import Unpack from ...utils import TransformersKwargs, auto_docstring, can_return_tuple, logging from ...utils.deprecation import deprecate_kwarg from ...utils.generic import check_model_inputs from .configuration_evolla import EvollaConfig, SaProtConfig if is_flash_attn_available(): from ...modeling_flash_attention_utils import _flash_attention_forward logger = logging.get_logger(__name__) def create_position_ids_from_input_ids(input_ids, padding_idx): """ Replace non-padding symbols with their position numbers. Position numbers begin at padding_idx+1. Padding symbols are ignored. This is modified from fairseq's `utils.make_positions`. Args: x: torch.Tensor x: Returns: torch.Tensor """ # The series of casts and type-conversions here are carefully balanced to both work with ONNX export and XLA. mask = input_ids.ne(padding_idx).int() incremental_indices = torch.cumsum(mask, dim=1).type_as(mask) * mask return incremental_indices.long() + padding_idx class EvollaSaProtEmbeddings(nn.Module): """ Same as BertEmbeddings with a tiny tweak for positional embeddings indexing. """ def __init__(self, config): super().__init__() self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id) if config.emb_layer_norm_before: self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) else: self.layer_norm = None self.dropout = nn.Dropout(config.hidden_dropout_prob) # position_ids (1, len position emb) is contiguous in memory and exported when serialized self.position_embedding_type = getattr(config, "position_embedding_type", "absolute") self.register_buffer( "position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False ) self.padding_idx = config.pad_token_id if self.position_embedding_type == "absolute": self.position_embeddings = nn.Embedding( config.max_position_embeddings, config.hidden_size, padding_idx=self.padding_idx ) self.token_dropout = config.token_dropout self.mask_token_id = config.mask_token_id # remove the position_ids in EsmEmbeddings self.position_ids = None def forward( self, input_ids=None, attention_mask=None, position_ids=None, inputs_embeds=None, ): if position_ids is None: if input_ids is not None: # Create the position ids from the input token ids. Any padded tokens remain padded. position_ids = create_position_ids_from_input_ids(input_ids, self.padding_idx) else: position_ids = self.create_position_ids_from_inputs_embeds(inputs_embeds) if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) # Note that if we want to support EVOLLA_SA_PROT-1 (not 1b!) in future then we need to support an # embedding_scale factor here. embeddings = inputs_embeds # Matt: EVOLLA_SA_PROT has the option to handle masking in MLM in a slightly unusual way. If the token_dropout # flag is False then it is handled in the same was as BERT/RoBERTa. If it is set to True, however, # masked tokens are treated as if they were selected for input dropout and zeroed out. # This "mask-dropout" is compensated for when masked tokens are not present, by scaling embeddings by # a factor of (fraction of unmasked tokens during training) / (fraction of unmasked tokens in sample). # This is analogous to the way that dropout layers scale down outputs during evaluation when not # actually dropping out values (or, equivalently, scale up their un-dropped outputs in training). if self.token_dropout: embeddings = embeddings.masked_fill((input_ids == self.mask_token_id).unsqueeze(-1), 0.0) mask_ratio_train = 0.15 * 0.8 # Hardcoded as the ratio used in all EVOLLA_SA_PROT model training runs src_lengths = attention_mask.sum(-1) mask_ratio_observed = (input_ids == self.mask_token_id).sum(-1).float() / src_lengths embeddings = (embeddings * (1 - mask_ratio_train) / (1 - mask_ratio_observed)[:, None, None]).to( embeddings.dtype ) if self.position_embedding_type == "absolute": position_embeddings = self.position_embeddings(position_ids) embeddings = embeddings + position_embeddings if self.layer_norm is not None: embeddings = self.layer_norm(embeddings) if attention_mask is not None: embeddings = (embeddings * attention_mask.unsqueeze(-1)).to(embeddings.dtype) # Matt: I think this line was copied incorrectly from BERT, disabling it for now. # embeddings = self.dropout(embeddings) return embeddings def create_position_ids_from_inputs_embeds(self, inputs_embeds): """ We are provided embeddings directly. We cannot infer which are padded so just generate sequential position ids. Args: inputs_embeds: torch.Tensor Returns: torch.Tensor """ input_shape = inputs_embeds.size()[:-1] sequence_length = input_shape[1] position_ids = torch.arange( self.padding_idx + 1, sequence_length + self.padding_idx + 1, dtype=torch.long, device=inputs_embeds.device ) return position_ids.unsqueeze(0).expand(input_shape) def rotate_half_esm(x): x1, x2 = x.chunk(2, dim=-1) return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb_esm(x, cos, sin): cos = cos[:, :, : x.shape[-2], :] sin = sin[:, :, : x.shape[-2], :] return (x * cos) + (rotate_half_esm(x) * sin) class EvollaSaProtRotaryEmbedding(nn.Module): """ Rotary position embeddings based on those in [RoFormer](https://huggingface.co/docs/transformers/model_doc/roformer). Query and keys are transformed by rotation matrices which depend on their relative positions. """ def __init__(self, dim: int): super().__init__() # Generate and save the inverse frequency buffer (non trainable) inv_freq = 1.0 / (10000 ** (torch.arange(0, dim, 2, dtype=torch.int64).float() / dim)) inv_freq = inv_freq self.register_buffer("inv_freq", inv_freq) self._seq_len_cached = None self._cos_cached = None self._sin_cached = None def _update_cos_sin_tables(self, x, seq_dimension=2): seq_len = x.shape[seq_dimension] # Reset the tables if the sequence length has changed, # or if we're on a new device (possibly due to tracing for instance) if seq_len != self._seq_len_cached or self._cos_cached.device != x.device: self._seq_len_cached = seq_len t = torch.arange(x.shape[seq_dimension], device=x.device).type_as(self.inv_freq) freqs = torch.outer(t, self.inv_freq) emb = torch.cat((freqs, freqs), dim=-1).to(x.device) self._cos_cached = emb.cos()[None, None, :, :] self._sin_cached = emb.sin()[None, None, :, :] return self._cos_cached, self._sin_cached def forward(self, q: torch.Tensor, k: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]: self._cos_cached, self._sin_cached = self._update_cos_sin_tables(k, seq_dimension=-2) return ( apply_rotary_pos_emb_esm(q, self._cos_cached, self._sin_cached), apply_rotary_pos_emb_esm(k, self._cos_cached, self._sin_cached), ) class EvollaSaProtSelfAttention(nn.Module): def __init__(self, config, position_embedding_type=None, layer_idx=None): super().__init__() self.config = config if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"): raise ValueError( f"The hidden size ({config.hidden_size}) is not a multiple of the number of attention " f"heads ({config.num_attention_heads})" ) self.num_attention_heads = config.num_attention_heads self.attention_head_size = int(config.hidden_size / config.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size self.query = nn.Linear(config.hidden_size, self.all_head_size) self.key = nn.Linear(config.hidden_size, self.all_head_size) self.value = nn.Linear(config.hidden_size, self.all_head_size) self.dropout = nn.Dropout(config.attention_probs_dropout_prob) self.position_embedding_type = position_embedding_type or getattr( config, "position_embedding_type", "absolute" ) self.rotary_embeddings = None if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": self.max_position_embeddings = config.max_position_embeddings self.distance_embedding = nn.Embedding(2 * config.max_position_embeddings - 1, self.attention_head_size) elif self.position_embedding_type == "rotary": self.rotary_embeddings = EvollaSaProtRotaryEmbedding(dim=self.attention_head_size) self.is_decoder = config.is_decoder self.layer_idx = layer_idx @deprecate_kwarg("past_key_value", version="4.54.0") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> tuple[torch.Tensor]: hidden_shape = (hidden_states.shape[0], -1, self.num_attention_heads, self.attention_head_size) query_layer = self.query(hidden_states).view(hidden_shape).transpose(1, 2) # If this is instantiated as a cross-attention module, the keys # and values come from an encoder; the attention mask needs to be # such that the encoder's padding tokens are not attended to. is_cross_attention = encoder_hidden_states is not None if is_cross_attention: key_layer = self.key(encoder_hidden_states).view(hidden_shape).transpose(1, 2) value_layer = self.value(encoder_hidden_states).view(hidden_shape).transpose(1, 2) attention_mask = encoder_attention_mask else: key_layer = self.key(hidden_states).view(hidden_shape).transpose(1, 2) value_layer = self.value(hidden_states).view(hidden_shape).transpose(1, 2) # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim). # EVOLLA_SA_PROT scales the query down by the same factor instead. Modulo numerical stability these are equivalent, # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original # EVOLLA_SA_PROT code and fix rotary embeddings. query_layer = query_layer * self.attention_head_size**-0.5 if self.position_embedding_type == "rotary": query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) # Take the dot product between "query" and "key" to get the raw attention scores. attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) if self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": seq_length = hidden_states.size()[1] position_ids_l = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(-1, 1) position_ids_r = torch.arange(seq_length, dtype=torch.long, device=hidden_states.device).view(1, -1) distance = position_ids_l - position_ids_r positional_embedding = self.distance_embedding(distance + self.max_position_embeddings - 1) positional_embedding = positional_embedding.to(dtype=query_layer.dtype) # fp16 compatibility if self.position_embedding_type == "relative_key": relative_position_scores = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores elif self.position_embedding_type == "relative_key_query": relative_position_scores_query = torch.einsum("bhld,lrd->bhlr", query_layer, positional_embedding) relative_position_scores_key = torch.einsum("bhrd,lrd->bhlr", key_layer, positional_embedding) attention_scores = attention_scores + relative_position_scores_query + relative_position_scores_key if attention_mask is not None: # Apply the attention mask is (precomputed for all layers in EvollaSaProtModel forward() function) attention_scores = attention_scores + attention_mask # Normalize the attention scores to probabilities. attention_probs = nn.functional.softmax(attention_scores, dim=-1) # This is actually dropping out entire tokens to attend to, which might # seem a bit unusual, but is taken from the original Transformer paper. attention_probs = self.dropout(attention_probs) # Mask heads if we want to if head_mask is not None: attention_probs = attention_probs * head_mask context_layer = torch.matmul(attention_probs.to(value_layer.dtype), value_layer) context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(new_context_layer_shape) outputs = (context_layer, attention_probs) if output_attentions else (context_layer,) if self.is_decoder: outputs = outputs + (None,) return outputs class EvollaSaProtSelfOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class EvollaSaProtFlashAttention2(EvollaSaProtSelfAttention): """ EVOLLA_SA_PROT flash attention module. This module inherits from `EvollaSaProtSelfAttention` as the weights of the module stays untouched. The only required change would be on the forward pass where it needs to correctly call the public API of flash attention and deal with padding tokens in case the input contains any of them. """ def __init__(self, config, position_embedding_type=None, layer_idx=None): super().__init__(config, position_embedding_type=position_embedding_type, layer_idx=layer_idx) # TODO: Should be removed once Flash Attention for RoCm is bumped to 2.1. # flash_attn<2.1 generates top-left aligned causal mask, while what is needed here is bottom-right alignement, that was made default for flash_attn>=2.1. This attribute is used to handle this difference. Reference: https://github.com/Dao-AILab/flash-attention/releases/tag/v2.1.0. # Beware that with flash_attn<2.1, using q_seqlen != k_seqlen (except for the case q_seqlen == 1) produces a wrong mask (top-left). self._flash_attn_uses_top_left_mask = flash_attn_supports_top_left_mask() self.dropout_prob = config.attention_probs_dropout_prob @deprecate_kwarg("past_key_value", version="4.54.0") def forward( self, hidden_states: torch.Tensor, attention_mask: Optional[torch.FloatTensor] = None, head_mask: Optional[torch.FloatTensor] = None, encoder_hidden_states: Optional[torch.FloatTensor] = None, encoder_attention_mask: Optional[torch.FloatTensor] = None, past_key_value: Optional[tuple[tuple[torch.FloatTensor]]] = None, output_attentions: Optional[bool] = False, ) -> tuple[torch.Tensor]: # Flash attention doesn't support output_attentions or cross attention if output_attentions or head_mask is not None or encoder_hidden_states is not None: logger.warning_once( "EvollaSaProtFlashAttention2 does not support output_attentions, head_mask, or cross_attention. " "Falling back to the manual attention implementation. This warning can be removed using " 'the argument `attn_implementation="eager"` when loading the model.' ) return super().forward( hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions, ) bsz, q_len, _ = hidden_states.size() query_layer = self.transpose_for_scores(self.query(hidden_states)) key_layer = self.transpose_for_scores(self.key(hidden_states)) value_layer = self.transpose_for_scores(self.value(hidden_states)) # In PEFT, usually we cast the layer norms in float32 for training stability reasons # therefore the input hidden states gets silently casted in float32. Hence, we need # cast them back in the correct dtype just to be sure everything works as expected. # This might slowdown training & inference so it is recommended to not cast the LayerNorms # in fp32. input_dtype = query_layer.dtype device_type = query_layer.device.type if query_layer.device.type != "mps" else "cpu" if input_dtype == torch.float32: if torch.is_autocast_enabled(): target_dtype = ( torch.get_autocast_dtype(device_type) if hasattr(torch, "get_autocast_dtype") else torch.get_autocast_gpu_dtype() ) # Handle the case where the model is quantized elif hasattr(self.config, "_pre_quantization_dtype"): target_dtype = self.config._pre_quantization_dtype else: target_dtype = self.query.weight.dtype logger.warning_once( f"The input hidden states seems to be silently casted in float32, this might be related to" f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in" f" {target_dtype}." ) query_layer = query_layer.to(target_dtype) key_layer = key_layer.to(target_dtype) value_layer = value_layer.to(target_dtype) # Matt: Our BERT model (which this code was derived from) scales attention logits down by sqrt(head_dim). # EVOLLA_SA_PROT scales the query down by the same factor instead. Modulo numerical stability these are equivalent, # but not when rotary embeddings get involved. Therefore, we scale the query here to match the original # EVOLLA_SA_PROT code and fix rotary embeddings. query_layer = query_layer * self.attention_head_size**-0.5 if self.position_embedding_type == "rotary": query_layer, key_layer = self.rotary_embeddings(query_layer, key_layer) elif self.position_embedding_type == "relative_key" or self.position_embedding_type == "relative_key_query": raise ValueError(f"ESM flash attention does not support {self.position_embedding_type} embeddings") # It would likely be faster to change self.transpose_for_scores to output the correct # dimensions for flash_attention_2, but that would also mean changing the rotary embedding # functions. Here we just permute the dimensions to match the expected input. attn_output = _flash_attention_forward( query_layer.permute(0, 2, 1, 3), key_layer.permute(0, 2, 1, 3), value_layer.permute(0, 2, 1, 3), attention_mask, query_length=q_len, is_causal=self.is_decoder, softmax_scale=1.0, dropout=self.dropout_prob if self.training else 0.0, use_top_left_mask=self._flash_attn_uses_top_left_mask, ) attn_output = attn_output.reshape(bsz, q_len, -1) outputs = (attn_output, None) if self.is_decoder: outputs = outputs + (None,) return outputs EVOLLA_SA_PROT_ATTENTION_CLASSES = { "eager": EvollaSaProtSelfAttention, "flash_attention_2": EvollaSaProtFlashAttention2, } class EvollaSaProtAttention(nn.Module): def __init__(self, config, layer_idx=None): super().__init__() self.self = EVOLLA_SA_PROT_ATTENTION_CLASSES[config._attn_implementation](config, layer_idx=layer_idx) self.output = EvollaSaProtSelfOutput(config) self.pruned_heads = set() self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) def prune_heads(self, heads): if len(heads) == 0: return heads, index = find_pruneable_heads_and_indices( heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads ) # Prune linear layers self.self.query = prune_linear_layer(self.self.query, index) self.self.key = prune_linear_layer(self.self.key, index) self.self.value = prune_linear_layer(self.self.value, index) self.output.dense = prune_linear_layer(self.output.dense, index, dim=1) # Update hyper params and store pruned heads self.self.num_attention_heads = self.self.num_attention_heads - len(heads) self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads self.pruned_heads = self.pruned_heads.union(heads) @deprecate_kwarg("past_key_value", version="4.54.0") def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, cache_position=None, ): hidden_states_ln = self.LayerNorm(hidden_states) self_outputs = self.self( hidden_states_ln, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) attention_output = self.output(self_outputs[0], hidden_states) outputs = (attention_output,) + self_outputs[1:] # add attentions if we output them return outputs def gelu(x): """ This is the gelu implementation from the original EVOLLA_SA_PROT repo. Using F.gelu yields subtly wrong results. """ return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) class EvollaSaProtIntermediate(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.intermediate_size) def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: hidden_states = self.dense(hidden_states) hidden_states = gelu(hidden_states) return hidden_states class EvollaSaProtOutput(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.intermediate_size, config.hidden_size) self.dropout = nn.Dropout(config.hidden_dropout_prob) def forward(self, hidden_states, input_tensor): hidden_states = self.dense(hidden_states) hidden_states = self.dropout(hidden_states) hidden_states = hidden_states + input_tensor return hidden_states class EvollaSaProtLayer(GradientCheckpointingLayer): def __init__(self, config): super().__init__() self.chunk_size_feed_forward = config.chunk_size_feed_forward self.seq_len_dim = 1 self.attention = EvollaSaProtAttention(config) self.is_decoder = config.is_decoder self.add_cross_attention = config.add_cross_attention if self.add_cross_attention: if not self.is_decoder: raise RuntimeError(f"{self} should be used as a decoder model if cross attention is added") self.crossattention = EvollaSaProtAttention(config) self.intermediate = EvollaSaProtIntermediate(config) self.output = EvollaSaProtOutput(config) self.LayerNorm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) @deprecate_kwarg("past_key_value", version="4.54.0") def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_value=None, output_attentions=False, cache_position=None, ): self_attention_outputs = self.attention( hidden_states, attention_mask=attention_mask, head_mask=head_mask, output_attentions=output_attentions, ) attention_output = self_attention_outputs[0] # if decoder, the last output is tuple of self-attn cache if self.is_decoder: outputs = self_attention_outputs[1:-1] else: outputs = self_attention_outputs[1:] # add self attentions if we output attention weights if self.is_decoder and encoder_hidden_states is not None: if not hasattr(self, "crossattention"): raise AttributeError( f"If `encoder_hidden_states` are passed, {self} has to be instantiated" " with cross-attention layers by setting `config.add_cross_attention=True`" ) cross_attention_outputs = self.crossattention( attention_output, attention_mask=attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) attention_output = cross_attention_outputs[0] outputs = outputs + cross_attention_outputs[1:-1] # add cross attentions if we output attention weights layer_output = self.feed_forward_chunk(attention_output) outputs = (layer_output,) + outputs # if decoder, return the attn key/values as the last output if self.is_decoder: outputs = outputs + (None,) return outputs def feed_forward_chunk(self, attention_output): attention_output_ln = self.LayerNorm(attention_output) intermediate_output = self.intermediate(attention_output_ln) layer_output = self.output(intermediate_output, attention_output) return layer_output class EvollaSaProtEncoder(nn.Module): def __init__(self, config): super().__init__() self.config = config self.layer = nn.ModuleList([EvollaSaProtLayer(config) for _ in range(config.num_hidden_layers)]) self.emb_layer_norm_after = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps) self.gradient_checkpointing = False @deprecate_kwarg("past_key_value", version="4.54.0") @deprecate_kwarg("use_cache", version="4.54.0") @can_return_tuple def forward( self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, past_key_values=None, use_cache=None, output_attentions=False, output_hidden_states=False, return_dict=True, cache_position=None, ): all_hidden_states = () if output_hidden_states else None all_self_attentions = () if output_attentions else None all_cross_attentions = () if output_attentions and self.config.add_cross_attention else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None layer_outputs = layer_module( hidden_states=hidden_states, attention_mask=attention_mask, head_mask=layer_head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_attention_mask, output_attentions=output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_self_attentions = all_self_attentions + (layer_outputs[1],) if self.config.add_cross_attention: all_cross_attentions = all_cross_attentions + (layer_outputs[2],) if self.emb_layer_norm_after: hidden_states = self.emb_layer_norm_after(hidden_states) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) return BaseModelOutputWithCrossAttentions( last_hidden_state=hidden_states, hidden_states=all_hidden_states, attentions=all_self_attentions, cross_attentions=all_cross_attentions, ) class EvollaSaProtPooler(nn.Module): def __init__(self, config): super().__init__() self.dense = nn.Linear(config.hidden_size, config.hidden_size) self.activation = nn.Tanh() def forward(self, hidden_states: torch.Tensor) -> torch.Tensor: # We "pool" the model by simply taking the hidden state corresponding # to the first token. first_token_tensor = hidden_states[:, 0] pooled_output = self.dense(first_token_tensor) pooled_output = self.activation(pooled_output) return pooled_output @auto_docstring class EvollaSaProtPreTrainedModel(PreTrainedModel): config: SaProtConfig _no_split_modules = ["EvollaSaProtLayer"] _supports_flash_attn = True def _init_weights(self, module): """Initialize the weights""" std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) class EvollaSaProtProteinEncoder(EvollaSaProtPreTrainedModel): def __init__(self, config: SaProtConfig): super().__init__(config) self.embeddings = EvollaSaProtEmbeddings(config) self.encoder = EvollaSaProtEncoder(config) def get_input_embeddings(self): return self.embeddings.word_embeddings def set_input_embeddings(self, value): self.embeddings.word_embeddings = value def _prune_heads(self, heads_to_prune): """ Prunes heads of the model. heads_to_prune: dict of {layer_num: list of heads to prune in this layer} See base class PreTrainedModel """ for layer, heads in heads_to_prune.items(): self.encoder.layer[layer].attention.prune_heads(heads) @can_return_tuple def forward( self, input_ids: Optional[torch.Tensor], attention_mask: Optional[torch.Tensor] = None, ) -> Union[tuple[torch.Tensor], BaseModelOutputWithPoolingAndCrossAttentions]: input_shape = input_ids.size() batch_size, seq_length = input_shape device = input_ids.device if attention_mask is None: attention_mask = torch.ones(((batch_size, seq_length)), device=device) inputs_embeds = self.embeddings(input_ids=input_ids, attention_mask=attention_mask) extended_attention_mask = self.get_extended_attention_mask(attention_mask, input_shape) encoder_outputs = self.encoder(inputs_embeds, attention_mask=extended_attention_mask) sequence_output = encoder_outputs[0] return BaseModelOutputWithPoolingAndCrossAttentions( last_hidden_state=sequence_output, hidden_states=encoder_outputs.hidden_states, attentions=encoder_outputs.attentions, cross_attentions=encoder_outputs.cross_attentions, ) def get_extended_attention_mask( self, attention_mask: Tensor, input_shape: tuple[int], device: torch.device = None, dtype: torch.float = None ) -> Tensor: """ Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (`Tuple[int]`): The shape of the input to the model. Returns: `torch.Tensor` The extended attention mask, with a the same dtype as `attention_mask.dtype`. """ if dtype is None: dtype = get_parameter_dtype(self) if not (attention_mask.dim() == 2 and self.config.is_decoder): # show warning only if it won't be shown in `create_extended_attention_mask_for_decoder` if device is not None: warnings.warn( "The `device` argument is deprecated and will be removed in v5 of Transformers.", FutureWarning ) # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] # ourselves in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 3: extended_attention_mask = attention_mask[:, None, :, :] elif attention_mask.dim() == 2: # Provided a padding mask of dimensions [batch_size, seq_length] # - if the model is a decoder, apply a causal mask in addition to the padding mask # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder: extended_attention_mask = ModuleUtilsMixin.create_extended_attention_mask_for_decoder( input_shape, attention_mask, device ) else: extended_attention_mask = attention_mask[:, None, None, :] else: raise ValueError( f"Wrong shape for input_ids (shape {input_shape}) or attention_mask (shape {attention_mask.shape})" ) # Since attention_mask is 1.0 for positions we want to attend and 0.0 for # masked positions, this operation will create a tensor which is 0.0 for # positions we want to attend and the dtype's smallest value for masked positions. # Since we are adding it to the raw scores before the softmax, this is # effectively the same as removing these entirely. extended_attention_mask = extended_attention_mask.to(dtype=dtype) # fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * torch.finfo(dtype).min return extended_attention_mask class EvollaSequenceCompressorAttention(nn.Module): def __init__(self, dim, dim_head=64, heads=8): super().__init__() self.scale = dim_head**-0.5 self.heads = heads inner_dim = dim_head * heads self.norm_media = nn.LayerNorm(dim) self.norm_latents = nn.LayerNorm(dim) self.to_q = nn.Linear(dim, inner_dim, bias=False) self.to_kv = nn.Linear(dim, inner_dim * 2, bias=False) self.to_out = nn.Linear(inner_dim, dim, bias=False) def forward(self, x, latents, mask): """ Args: x (torch.Tensor): image features shape (b, n1, D) latent (torch.Tensor): latent features shape (b, n2, D); n2: num of latent tokens """ x = self.norm_media(x) latents = self.norm_latents(latents) h = self.heads q = self.to_q(latents) kv_input = torch.cat((x, latents), dim=-2) k, v = self.to_kv(kv_input).chunk( 2, dim=-1 ) # each: batch_size, max_protein_length+num_latents, dim_head*num_heads q = q.view(q.size(0), q.size(1), h, -1).permute(0, 2, 1, 3) k = k.view(k.size(0), k.size(1), h, -1).permute(0, 2, 1, 3) v = v.view(v.size(0), v.size(1), h, -1).permute(0, 2, 1, 3) q = q * self.scale # batch_size, num_heads, num_latents, dim_head # attention sim = torch.matmul(q, k.transpose(-1, -2)) sim = sim - sim.amax(dim=-1, keepdim=True).detach() bs, nh, skd, okd = sim.shape ones = torch.ones(nh, skd).to(mask.device) # Create a tensor of ones with shape (nh, skd) mask_exp = mask[:, None, None, :] ones_exp = ones[None, :, :, None] mask = mask_exp * ones_exp sim = sim.masked_fill((1 - mask).bool(), -1e4) attn = sim.softmax(dim=-1) out = torch.matmul(attn, v) out = out.permute(0, 2, 1, 3) # [batch, seq, head, features] -> [batch, seq, head*features] out = out.reshape(out.size(0), out.size(1), -1) return self.to_out(out) class EvollaFeedForward(nn.Module): def __init__(self, dim, mult=4): super().__init__() inner_dim = int(dim * mult) self.norm = nn.LayerNorm(dim) self.fc1 = nn.Linear(dim, inner_dim, bias=False) self.activation = nn.GELU() self.fc2 = nn.Linear(inner_dim, dim, bias=False) def forward(self, x): return self.fc2(self.activation(self.fc1(self.norm(x)))) class EvollaSequenceCompressorResampler(nn.Module): def __init__(self, config: EvollaConfig): super().__init__() protein_repr_dim = config.protein_encoder_config.hidden_size self.num_latents = config.resampler_num_latents self.latents = nn.Parameter(torch.randn(self.num_latents, protein_repr_dim), requires_grad=True) self.layers = nn.ModuleList([]) for _ in range(config.resampler_depth): self.layers.append( nn.ModuleList( [ EvollaSequenceCompressorAttention( dim=protein_repr_dim, dim_head=config.resampler_dim_head, heads=config.resampler_heads ), EvollaFeedForward(dim=protein_repr_dim, mult=config.resampler_ff_mult), ] ) ) self.norm = nn.LayerNorm(config.hidden_size) self.protein_projector = nn.Linear(protein_repr_dim, config.hidden_size) def forward(self, embeds, mask): b = embeds.shape[0] bs, _ = mask.shape # bs, max_protein_length latent_mask = torch.ones(bs, self.num_latents).to(mask.device) mask = torch.cat((mask, latent_mask), dim=1) # bs, max_protein_length + num_latents # blocks ones = torch.ones(b).to(self.latents.device) latents = self.latents[None] * ones.view(-1, 1, 1) # [b,n,d] latents = latents.to(embeds.dtype) for attn, ff in self.layers: latents = attn(embeds, latents, mask) + latents latents = ff(latents) + latents transformed_feature = self.protein_projector(latents) return self.norm(transformed_feature) @dataclass @auto_docstring class EvollaProteinEncoderModelOutput(ModelOutput): sequence_compressor_output: torch.FloatTensor = None last_hidden_state: Optional[torch.FloatTensor] = None hidden_states: Optional[tuple[torch.FloatTensor, ...]] = None attentions: Optional[tuple[torch.FloatTensor, ...]] = None class EvollaProteinEncoder(nn.Module): def __init__(self, config: EvollaConfig): super().__init__() self.model = EvollaSaProtProteinEncoder(config=config.protein_encoder_config) self.sequence_compressor_resampler = EvollaSequenceCompressorResampler(config=config) @can_return_tuple def forward(self, input_ids: torch.LongTensor, attention_mask: torch.FloatTensor, **kwargs): protein_output = self.model(input_ids=input_ids, attention_mask=attention_mask) protein_embeds = protein_output.last_hidden_state sequence_repr = self.sequence_compressor_resampler(protein_embeds, attention_mask) return EvollaProteinEncoderModelOutput( sequence_compressor_output=sequence_repr, last_hidden_state=protein_output.last_hidden_state, ) class EvollaSequenceAlignerCrossAttention(nn.Module): def __init__( self, config, protein_encoder_dim: Optional[int] = None, structure_encoder_dim: Optional[int] = None, msa_encoder_dim: Optional[int] = None, ): super().__init__() self.hidden_size = config.hidden_size self.num_attention_heads = config.num_attention_heads self.scale = self.num_attention_heads**-0.5 self.attention_head_size = int(self.hidden_size / self.num_attention_heads) self.all_head_size = self.num_attention_heads * self.attention_head_size attention_probs_dropout_prob = config.aligner_attention_probs_dropout_prob enable_bias = config.aligner_enable_bias ffn_mult = config.aligner_ffn_mult self.query = nn.Linear(self.hidden_size, self.all_head_size) if protein_encoder_dim is not None: self.key_protein = nn.Linear(protein_encoder_dim, self.all_head_size) self.value_protein = nn.Linear(protein_encoder_dim, self.all_head_size) else: self.key_protein = None self.value_protein = None if structure_encoder_dim is not None: self.key_structure = nn.Linear(structure_encoder_dim, self.all_head_size) self.value_structure = nn.Linear(structure_encoder_dim, self.all_head_size) else: self.key_structure = None self.value_structure = None if msa_encoder_dim is not None: self.key_msa = nn.Linear(msa_encoder_dim, self.all_head_size) self.value_msa = nn.Linear(msa_encoder_dim, self.all_head_size) else: self.key_msa = None self.value_msa = None self.attention_norm = EvollaRMSNorm(self.hidden_size) self.dropout = nn.Dropout(attention_probs_dropout_prob) self.out_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=enable_bias) self.ff = EvollaFeedForward(self.hidden_size, ffn_mult) self.gate_attention = nn.Parameter(torch.tensor([0.0])) self.gate_ffw = nn.Parameter(torch.tensor([0.0])) def cross_attention( self, query_states, protein_key_value_states, structure_key_value_states, msa_key_value_states, query_attn_mask, protein_kv_attn_mask, structure_kv_attn_mask, msa_kv_attn_mask, ): """ query_states: text key_value_states: protein query_states: [bs, query_seq_len, dim] key_value_states: [bs, kv_seq_len, dim] query_attn_mask: [bs, query_seq_len] kv_attn_mask: [bs, kv_seq_len] """ # Concatenate protein and structure kv_attn_mask = [protein_kv_attn_mask, structure_kv_attn_mask, msa_kv_attn_mask] kv_attn_mask = [_ for _ in kv_attn_mask if _ is not None] if not kv_attn_mask: raise ValueError("At least one modality should be provided for cross attention.") kv_attn_mask = torch.cat(kv_attn_mask, dim=1) query_layer = self.attention_norm(query_states) # Warning: This place might cause issues, refers to # https://discuss.pytorch.org/t/cuda-error-cublas-status-not-supported-when-calling-cublasltmatmul-from-torch-nn-functional-linear/170214/13 # Solution: add `DISABLE_ADDMM_CUDA_LT=1` as environment variable # Apply linear transformation to input_query, input_key, and input_value query_layer = self.query(query_layer) # [bs, querylength, dim] if self.key_protein is not None and self.value_protein is not None: protein_key_value_states = protein_key_value_states.to(query_states) key_layer_protein = self.key_protein(protein_key_value_states) # [bs, keylength, dim] value_layer_protein = self.value_protein(protein_key_value_states) # [bs, keylength, dim] else: key_layer_protein = None value_layer_protein = None if self.key_structure is not None and self.value_structure is not None: structure_key_value_states = structure_key_value_states.to(query_states) key_layer_structure = self.key_structure(structure_key_value_states) # [bs, keylength, dim] value_layer_structure = self.value_structure(structure_key_value_states) # [bs, keylength, dim] else: key_layer_structure = None value_layer_structure = None if self.key_msa is not None and self.value_msa is not None: msa_key_value_states = msa_key_value_states.to(query_states) key_layer_msa = self.key_msa(msa_key_value_states) # [bs, keylength, dim] value_layer_msa = self.value_msa(msa_key_value_states) # [bs, keylength, dim] else: key_layer_msa = None value_layer_msa = None key_layer = [key_layer_protein, key_layer_structure, key_layer_msa] key_layer = [_ for _ in key_layer if _ is not None] key_layer = torch.cat(key_layer, dim=1) value_layer = [value_layer_protein, value_layer_structure, value_layer_msa] value_layer = [_ for _ in value_layer if _ is not None] value_layer = torch.cat(value_layer, dim=1) new_query_layer_shape = query_layer.size()[:-1] + ( self.num_attention_heads, self.attention_head_size, ) query_layer = query_layer.view(*new_query_layer_shape).permute(0, 2, 1, 3) new_key_layer_shape = key_layer.size()[:-1] + ( self.num_attention_heads, self.attention_head_size, ) key_layer = key_layer.view(*new_key_layer_shape).permute(0, 2, 1, 3) new_value_layer_shape = value_layer.size()[:-1] + ( self.num_attention_heads, self.attention_head_size, ) value_layer = value_layer.view(*new_value_layer_shape).permute(0, 2, 1, 3) query_layer = query_layer * self.scale # attention_mask: [bs, 1, querylength, keylength] if query_attn_mask is None: query_attn_mask = torch.ones(query_states.size(0), query_states.size(1)).to(query_states.device) attention_mask = query_attn_mask[:, None, :, None] * kv_attn_mask[:, None, None, :] # Compute the scaled dot-product attention scores attn_weights = torch.matmul(query_layer, key_layer.transpose(-1, -2)) # [bs, numheads, querylength, keylength] attn_weights = attn_weights - attn_weights.amax(dim=-1, keepdim=True).detach() # To stablize score attention_scores = attn_weights.masked_fill( (1 - attention_mask).bool(), torch.finfo(attn_weights.dtype).min ) # [bs, numheads, querylength, keylength] attention_probs = nn.Softmax(dim=-1)(attention_scores) # attention_probs_dropped = self.dropout(attention_probs) context_layer = torch.matmul(attention_probs, value_layer) # [bs, numheads, querylength, dim/numheads] context_layer = context_layer.permute(0, 2, 1, 3).contiguous() new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) context_layer = context_layer.view(*new_context_layer_shape) context_layer = self.out_proj(context_layer) return context_layer def forward( self, query_states, protein_kv_states, structure_kv_states, msa_kv_states, query_attn_mask, protein_kv_attn_mask=None, structure_kv_attn_mask=None, msa_kv_attn_mask=None, protein_batch_mask=None, structure_batch_mask=None, msa_batch_mask=None, past_key_value=None, ): if protein_kv_states is not None: bs, protein_kv_seq_len, dim = protein_kv_states.shape if protein_kv_attn_mask is None: protein_kv_attn_mask = ( torch.ones(bs, protein_kv_seq_len).to(protein_batch_mask.device) * protein_batch_mask.expand(size=(protein_kv_seq_len, bs)).T ).to(protein_kv_states.device) else: protein_kv_attn_mask = None if structure_kv_states is not None: bs, structure_kv_seq_len, dim = structure_kv_states.shape if structure_kv_attn_mask is None: structure_kv_attn_mask = ( torch.ones(bs, structure_kv_seq_len).to(protein_batch_mask.device) * structure_batch_mask.expand(size=(structure_kv_seq_len, bs)).T ).to(structure_kv_states.device) else: structure_kv_attn_mask = None if msa_kv_states is not None: bs, msa_kv_seq_len, dim = msa_kv_states.shape if msa_kv_attn_mask is None: msa_kv_attn_mask = ( torch.ones(bs, msa_kv_seq_len).to(protein_batch_mask.device) * msa_batch_mask.expand(size=(msa_kv_seq_len, bs)).T ).to(msa_kv_states.device) else: msa_kv_attn_mask = None hidden_states = query_states # only when there's at least one valid modality, crossattention will be performed if ( (protein_kv_states is not None and protein_kv_attn_mask.any()) or (structure_kv_states is not None and structure_kv_attn_mask.any()) or (msa_kv_states is not None and msa_kv_attn_mask.any()) ): residual = hidden_states hidden_states = self.cross_attention( query_states=hidden_states, protein_key_value_states=protein_kv_states, structure_key_value_states=structure_kv_states, msa_key_value_states=msa_kv_states, query_attn_mask=query_attn_mask, protein_kv_attn_mask=protein_kv_attn_mask, structure_kv_attn_mask=structure_kv_attn_mask, msa_kv_attn_mask=msa_kv_attn_mask, ) # [bs, query_seq_len, dim] # tanh gate hidden_states = torch.tanh(self.gate_attention) * hidden_states hidden_states = residual + hidden_states # input_query residual = hidden_states hidden_states = self.ff(hidden_states) * torch.tanh(self.gate_ffw) hidden_states = residual + hidden_states return hidden_states @use_kernel_forward_from_hub("RMSNorm") class EvollaRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): """ EvollaRMSNorm is equivalent to T5LayerNorm """ super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return self.weight * hidden_states.to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class EvollaRotaryEmbedding(nn.Module): def __init__(self, config: EvollaConfig, device=None): super().__init__() # BC: "rope_type" was originally "type" if hasattr(config, "rope_scaling") and isinstance(config.rope_scaling, dict): self.rope_type = config.rope_scaling.get("rope_type", config.rope_scaling.get("type")) else: self.rope_type = "default" self.max_seq_len_cached = config.max_position_embeddings self.original_max_seq_len = config.max_position_embeddings self.config = config self.rope_init_fn = ROPE_INIT_FUNCTIONS[self.rope_type] inv_freq, self.attention_scaling = self.rope_init_fn(self.config, device) self.register_buffer("inv_freq", inv_freq, persistent=False) self.original_inv_freq = self.inv_freq @torch.no_grad() @dynamic_rope_update # power user: used with advanced RoPE types (e.g. dynamic rope) def forward(self, x, position_ids): inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device) position_ids_expanded = position_ids[:, None, :].float() device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu" with torch.autocast(device_type=device_type, enabled=False): # Force float32 freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2) emb = torch.cat((freqs, freqs), dim=-1) cos = emb.cos() * self.attention_scaling sin = emb.sin() * self.attention_scaling return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype) class EvollaMLP(nn.Module): def __init__(self, config): super().__init__() self.config = config self.hidden_size = config.hidden_size self.intermediate_size = config.intermediate_size self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias) self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias) self.act_fn = ACT2FN[config.hidden_act] def forward(self, x): down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x)) return down_proj def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., : x.shape[-1] // 2] x2 = x[..., x.shape[-1] // 2 :] return torch.cat((-x2, x1), dim=-1) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor: """ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch, num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim) """ batch, num_key_value_heads, slen, head_dim = hidden_states.shape if n_rep == 1: return hidden_states hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim) return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim) def eager_attention_forward( module: nn.Module, query: torch.Tensor, key: torch.Tensor, value: torch.Tensor, attention_mask: Optional[torch.Tensor], scaling: float, dropout: float = 0.0, **kwargs: Unpack[TransformersKwargs], ): key_states = repeat_kv(key, module.num_key_value_groups) value_states = repeat_kv(value, module.num_key_value_groups) attn_weights = torch.matmul(query, key_states.transpose(2, 3)) * scaling if attention_mask is not None: causal_mask = attention_mask[:, :, :, : key_states.shape[-2]] attn_weights = attn_weights + causal_mask attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype) attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training) attn_output = torch.matmul(attn_weights, value_states) attn_output = attn_output.transpose(1, 2).contiguous() return attn_output, attn_weights class EvollaAttention(nn.Module): """Multi-headed attention from 'Attention Is All You Need' paper""" def __init__(self, config: EvollaConfig, layer_idx: int): super().__init__() self.config = config self.layer_idx = layer_idx self.head_dim = getattr(config, "head_dim", config.hidden_size // config.num_attention_heads) self.num_key_value_groups = config.num_attention_heads // config.num_key_value_heads self.scaling = self.head_dim**-0.5 self.attention_dropout = config.attention_dropout self.is_causal = True self.q_proj = nn.Linear( config.hidden_size, config.num_attention_heads * self.head_dim, bias=config.attention_bias ) self.k_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.v_proj = nn.Linear( config.hidden_size, config.num_key_value_heads * self.head_dim, bias=config.attention_bias ) self.o_proj = nn.Linear( config.num_attention_heads * self.head_dim, config.hidden_size, bias=config.attention_bias ) def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor], past_key_value: Optional[Cache] = None, cache_position: Optional[torch.LongTensor] = None, **kwargs: Unpack[TransformersKwargs], ) -> tuple[torch.Tensor, torch.Tensor]: input_shape = hidden_states.shape[:-1] hidden_shape = (*input_shape, -1, self.head_dim) query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2) key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2) value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2) cos, sin = position_embeddings query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin) if past_key_value is not None: # sin and cos are specific to RoPE models; cache_position needed for the static cache cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position} key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs) attention_interface: Callable = eager_attention_forward if self.config._attn_implementation != "eager": attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation] attn_output, attn_weights = attention_interface( self, query_states, key_states, value_states, attention_mask, dropout=0.0 if not self.training else self.attention_dropout, scaling=self.scaling, **kwargs, ) attn_output = attn_output.reshape(*input_shape, -1).contiguous() attn_output = self.o_proj(attn_output) return attn_output, attn_weights class EvollaDecoderLayer(GradientCheckpointingLayer): def __init__(self, config: EvollaConfig, layer_idx: int): super().__init__() self.hidden_size = config.hidden_size self.self_attn = EvollaAttention(config=config, layer_idx=layer_idx) self.mlp = EvollaMLP(config) self.input_layernorm = EvollaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = EvollaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) if (layer_idx + 1) % max(config.num_hidden_layers // config.aligner_num_add_layers, 1) == 0: self.adapter = EvollaSequenceAlignerCrossAttention( config, protein_encoder_dim=config.hidden_size, ) def forward( self, hidden_states: torch.Tensor, position_embeddings: tuple[torch.Tensor, torch.Tensor], attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_value: Optional[Cache] = None, output_attentions: Optional[bool] = False, use_cache: Optional[bool] = False, cache_position: Optional[torch.LongTensor] = None, protein_kv_states: Optional[torch.Tensor] = None, structure_kv_states: Optional[torch.Tensor] = None, msa_kv_states: Optional[torch.Tensor] = None, protein_batch_mask: Optional[torch.Tensor] = None, structure_batch_mask: Optional[torch.Tensor] = None, msa_batch_mask: Optional[torch.Tensor] = None, query_attn_mask: Optional[torch.Tensor] = None, **kwargs, ) -> tuple[torch.Tensor]: residual = hidden_states hidden_states = self.input_layernorm(hidden_states) # Self Attention hidden_states, _ = self.self_attn( hidden_states=hidden_states, attention_mask=attention_mask, position_ids=position_ids, past_key_value=past_key_value, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, **kwargs, ) hidden_states = residual + hidden_states # Fully Connected residual = hidden_states hidden_states = self.post_attention_layernorm(hidden_states) hidden_states = self.mlp(hidden_states) hidden_states = residual + hidden_states if hasattr(self, "adapter"): hidden_states = self.adapter( query_states=hidden_states, protein_kv_states=protein_kv_states, structure_kv_states=structure_kv_states, msa_kv_states=msa_kv_states, query_attn_mask=query_attn_mask, protein_batch_mask=protein_batch_mask, structure_batch_mask=structure_batch_mask, msa_batch_mask=msa_batch_mask, ) return hidden_states @auto_docstring class EvollaPreTrainedModel(PreTrainedModel): config: EvollaConfig base_model_prefix = "model" supports_gradient_checkpointing = True _no_split_modules = ["EvollaDecoderLayer"] _skip_keys_device_placement = ["past_key_values"] _supports_flash_attn = True _supports_sdpa = True _supports_flex_attn = True _can_compile_fullgraph = True _supports_attention_backend = False _can_record_outputs = { "hidden_states": EvollaDecoderLayer, "attentions": EvollaAttention, } def _init_weights(self, module): std = self.config.initializer_range if isinstance(module, nn.Linear): module.weight.data.normal_(mean=0.0, std=std) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.Embedding): module.weight.data.normal_(mean=0.0, std=std) if module.padding_idx is not None: module.weight.data[module.padding_idx].zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, EvollaRMSNorm): module.weight.data.fill_(1.0) elif isinstance(module, EvollaSequenceAlignerCrossAttention): module.gate_attention.zero_() module.gate_ffw.zero_() module.attention_norm.weight.data.fill_(1.0) elif isinstance(module, EvollaSequenceCompressorResampler): module.latents.data.normal_(mean=0.0, std=std) class EvollaModel(EvollaPreTrainedModel): def __init__(self, config: EvollaConfig): super().__init__(config) self.padding_idx = config.pad_token_id self.vocab_size = config.vocab_size self.embed_tokens = nn.Embedding(self.vocab_size, config.hidden_size, self.padding_idx) self.protein_encoder = EvollaProteinEncoder(config=config) self.layers = nn.ModuleList( [ EvollaDecoderLayer( config=config, layer_idx=layer_idx, ) for layer_idx in range(config.num_hidden_layers) ] ) self.norm = EvollaRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = EvollaRotaryEmbedding(config=config) self.gradient_checkpointing = getattr(config, "gradient_checkpointing", False) self.post_init() def get_input_embeddings(self): return self.embed_tokens def set_input_embeddings(self, value): self.embed_tokens = value @auto_docstring @check_model_inputs def forward( self, input_ids: torch.LongTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, use_cache: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, protein_input_ids: Optional[torch.LongTensor] = None, protein_attention_mask: Optional[torch.Tensor] = None, structure_feats: Optional[torch.FloatTensor] = None, msa_feats: Optional[torch.FloatTensor] = None, structure_batch_mask: Optional[torch.Tensor] = None, msa_batch_mask: Optional[torch.Tensor] = None, **kwargs, ) -> Union[tuple, BaseModelOutputWithPast]: r""" protein_input_ids (torch.LongTensor): The input IDs for the protein sequence in structure-aware tokens. Should be of shape `(batch_size, protein_seq_length)` and type `torch.LongTensor`. protein_attention_mask (torch.Tensor): The attention mask for the protein sequence. Should be of shape `(batch_size, protein_seq_length)` and type `torch.Tensor`. structure_feats (torch.FloatTensor): The input IDs for purely structure-based features. Should be of shape `(batch_size, structure_seq_length, structure_feat_dim)` and type `torch.FloatTensor`. Dummy input for now. msa_feats (torch.FloatTensor): The input IDs for purely MSA-based features. Should be of shape `(batch_size, msa_seq_length, msa_feat_dim)` and type `torch.FloatTensor`. Dummy input for now. structure_batch_mask (torch.Tensor): The batch mask to decide which protein sequences are purely structure-based. Should be of shape `(batch_size)` and type `torch.Tensor`. Should be paired with `structure_feats`. Dummpy input for now. msa_batch_mask (torch.Tensor): The batch mask to decide which protein sequences are purely MSA-based. Should be of shape `(batch_size)` and type `torch.Tensor`. Should be paired with `msa_feats`. Dummpy input for now. """ # If not provided `protein_feats`, use the `protein_encoder` to get the protein features if protein_input_ids is not None and protein_attention_mask is not None: protein_outputs = self.protein_encoder( input_ids=protein_input_ids, attention_mask=protein_attention_mask, ) protein_feats = protein_outputs.sequence_compressor_output protein_batch_mask = torch.tensor([True] * protein_input_ids.shape[0], device=protein_input_ids.device) if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.embed_tokens(input_ids) if use_cache and past_key_values is None: past_key_values = DynamicCache() if cache_position is None: past_seen_tokens = past_key_values.get_seq_length() if past_key_values is not None else 0 cache_position = torch.arange( past_seen_tokens, past_seen_tokens + inputs_embeds.shape[1], device=inputs_embeds.device ) if position_ids is None: position_ids = cache_position.unsqueeze(0) causal_mask = create_causal_mask( config=self.config, input_embeds=inputs_embeds, attention_mask=attention_mask, cache_position=cache_position, past_key_values=past_key_values, ) hidden_states = inputs_embeds # create position embeddings to be shared across the decoder layers position_embeddings = self.rotary_emb(hidden_states, position_ids) for decoder_layer in self.layers: hidden_states = decoder_layer( hidden_states, attention_mask=causal_mask, position_ids=position_ids, past_key_value=past_key_values, use_cache=use_cache, cache_position=cache_position, position_embeddings=position_embeddings, protein_kv_states=protein_feats, structure_kv_states=structure_feats, msa_kv_states=msa_feats, protein_batch_mask=protein_batch_mask, structure_batch_mask=structure_batch_mask, msa_batch_mask=msa_batch_mask, query_attn_mask=attention_mask, **kwargs, ) hidden_states = self.norm(hidden_states) output = BaseModelOutputWithPast( last_hidden_state=hidden_states, past_key_values=past_key_values, ) return output class EvollaForProteinText2Text(EvollaPreTrainedModel, GenerationMixin): def __init__(self, config): super().__init__(config) self.model = EvollaModel(config) self.vocab_size = config.vocab_size self.lm_head = nn.Linear(config.hidden_size, self.vocab_size, bias=False) self.post_init() def get_input_embeddings(self): return self.model.get_input_embeddings() def set_input_embeddings(self, value): return self.model.set_input_embeddings(value) @can_return_tuple @auto_docstring def forward( self, input_ids: torch.LongTensor = None, # text input ids attention_mask: Optional[torch.Tensor] = None, # text attention mask inputs_embeds: Optional[torch.FloatTensor] = None, # text input embeddings labels: Optional[torch.LongTensor] = None, protein_input_ids: torch.LongTensor = None, protein_attention_mask: Optional[torch.Tensor] = None, use_cache: Optional[bool] = None, **kwargs, ): r""" protein_input_ids (torch.LongTensor): The input IDs for the protein sequence. Should be of shape `(batch_size, protein_seq_length)` and type `torch.LongTensor`. protein_attention_mask (torch.Tensor): The attention mask for the protein sequence. Should be of shape `(batch_size, protein_seq_length)` and type `torch.Tensor`. Example: ```python >>> from transformers import EvollaProcessor, EvollaForProteinText2Text >>> model = EvollaForProteinText2Text.from_pretrained("westlake/Evolla-10B-hf") >>> processor = EvollaProcessor.from_pretrained("westlake/Evolla-10B-hf") >>> protein_information = { "aa_seq": "your amino acid sequence", "foldseek": "your foldseek sequence", } >>> question = "What is the function of this protein?" >>> message = [ {"role": "system", "content": "You are an AI expert that can answer any questions about protein."}, {"role": "user", "content": question}, ] >>> inputs = processor(proteins=[protein_information], messages_list=[message], return_tensors="pt", padding="longest") >>> outputs = model.generate(**inputs) >>> print(processor.batch_decode(outputs, skip_special_tokens=True)) ```""" outputs = self.model( input_ids=input_ids, attention_mask=attention_mask, inputs_embeds=inputs_embeds, protein_input_ids=protein_input_ids, protein_attention_mask=protein_attention_mask, use_cache=use_cache, **kwargs, ) hidden_states = outputs[0] logits = self.lm_head(hidden_states) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.vocab_size, **kwargs) lm_outputs = CausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) return lm_outputs __all__ = ["EvollaForProteinText2Text", "EvollaModel", "EvollaPreTrainedModel"]