# mypy: allow-untyped-defs import copy from itertools import chain from typing import Any import torch __all__ = [ "set_module_weight", "set_module_bias", "has_bias", "get_module_weight", "get_module_bias", "max_over_ndim", "min_over_ndim", "channel_range", "get_name_by_module", "cross_layer_equalization", "process_paired_modules_list_to_name", "expand_groups_in_paired_modules_list", "equalize", "converged", ] _supported_types = {torch.nn.Conv2d, torch.nn.Linear, torch.nn.Conv1d} _supported_intrinsic_types = { torch.ao.nn.intrinsic.ConvReLU2d, torch.ao.nn.intrinsic.LinearReLU, torch.ao.nn.intrinsic.ConvReLU1d, } _all_supported_types = _supported_types.union(_supported_intrinsic_types) def set_module_weight(module, weight) -> None: if type(module) in _supported_types: module.weight = torch.nn.Parameter(weight) else: module[0].weight = torch.nn.Parameter(weight) def set_module_bias(module, bias) -> None: if type(module) in _supported_types: module.bias = torch.nn.Parameter(bias) else: module[0].bias = torch.nn.Parameter(bias) def has_bias(module) -> bool: if type(module) in _supported_types: return module.bias is not None else: return module[0].bias is not None def get_module_weight(module): if type(module) in _supported_types: return module.weight else: return module[0].weight def get_module_bias(module): if type(module) in _supported_types: return module.bias else: return module[0].bias def max_over_ndim(input, axis_list, keepdim=False): """Apply 'torch.max' over the given axes.""" axis_list.sort(reverse=True) for axis in axis_list: input, _ = input.max(axis, keepdim) return input def min_over_ndim(input, axis_list, keepdim=False): """Apply 'torch.min' over the given axes.""" axis_list.sort(reverse=True) for axis in axis_list: input, _ = input.min(axis, keepdim) return input def channel_range(input, axis=0): """Find the range of weights associated with a specific channel.""" size_of_tensor_dim = input.ndim axis_list = list(range(size_of_tensor_dim)) axis_list.remove(axis) mins = min_over_ndim(input, axis_list) maxs = max_over_ndim(input, axis_list) assert mins.size(0) == input.size( axis ), "Dimensions of resultant channel range does not match size of requested axis" return maxs - mins def get_name_by_module(model, module): """Get the name of a module within a model. Args: model: a model (nn.module) that equalization is to be applied on module: a module within the model Returns: name: the name of the module within the model """ for name, m in model.named_modules(): if m is module: return name raise ValueError("module is not in the model") def cross_layer_equalization(module1, module2, output_axis=0, input_axis=1): """Scale the range of Tensor1.output to equal Tensor2.input. Given two adjacent tensors', the weights are scaled such that the ranges of the first tensors' output channel are equal to the ranges of the second tensors' input channel """ if ( type(module1) not in _all_supported_types or type(module2) not in _all_supported_types ): raise ValueError( "module type not supported:", type(module1), " ", type(module2) ) bias = get_module_bias(module1) if has_bias(module1) else None weight1 = get_module_weight(module1) weight2 = get_module_weight(module2) if weight1.size(output_axis) != weight2.size(input_axis): raise TypeError( "Number of output channels of first arg do not match \ number input channels of second arg" ) weight1_range = channel_range(weight1, output_axis) weight2_range = channel_range(weight2, input_axis) # producing scaling factors to applied weight2_range += 1e-9 scaling_factors = torch.sqrt(weight1_range / weight2_range) inverse_scaling_factors = torch.reciprocal(scaling_factors) if bias is not None: bias = bias * inverse_scaling_factors # formatting the scaling (1D) tensors to be applied on the given argument tensors # pads axis to (1D) tensors to then be broadcasted size1 = [1] * weight1.ndim size1[output_axis] = weight1.size(output_axis) size2 = [1] * weight2.ndim size2[input_axis] = weight2.size(input_axis) scaling_factors = torch.reshape(scaling_factors, size2) inverse_scaling_factors = torch.reshape(inverse_scaling_factors, size1) weight1 = weight1 * inverse_scaling_factors weight2 = weight2 * scaling_factors set_module_weight(module1, weight1) if bias is not None: set_module_bias(module1, bias) set_module_weight(module2, weight2) def process_paired_modules_list_to_name(model, paired_modules_list): """Processes a list of paired modules to a list of names of paired modules.""" for group in paired_modules_list: for i, item in enumerate(group): if isinstance(item, torch.nn.Module): group[i] = get_name_by_module(model, item) elif not isinstance(item, str): raise TypeError("item must be a nn.Module or a string") return paired_modules_list def expand_groups_in_paired_modules_list(paired_modules_list): """Expands module pair groups larger than two into groups of two modules.""" new_list = [] for group in paired_modules_list: if len(group) == 1: raise ValueError("Group must have at least two modules") elif len(group) == 2: new_list.append(group) elif len(group) > 2: new_list.extend([group[i], group[i + 1]] for i in range(len(group) - 1)) return new_list def equalize(model, paired_modules_list, threshold=1e-4, inplace=True): """Equalize modules until convergence is achieved. Given a list of adjacent modules within a model, equalization will be applied between each pair, this will repeated until convergence is achieved Keeps a copy of the changing modules from the previous iteration, if the copies are not that different than the current modules (determined by converged_test), then the modules have converged enough that further equalizing is not necessary Reference is section 4.1 of this paper https://arxiv.org/pdf/1906.04721.pdf Args: model: a model (nn.Module) that equalization is to be applied on paired_modules_list (List(List[nn.module || str])): a list of lists where each sublist is a pair of two submodules found in the model, for each pair the two modules have to be adjacent in the model, with only piece-wise-linear functions like a (P)ReLU or LeakyReLU in between to get expected results. The list can contain either modules, or names of modules in the model. If you pass multiple modules in the same list, they will all be equalized together. threshold (float): a number used by the converged function to determine what degree of similarity between models is necessary for them to be called equivalent inplace (bool): determines if function is inplace or not """ paired_modules_list = process_paired_modules_list_to_name( model, paired_modules_list ) if not inplace: model = copy.deepcopy(model) paired_modules_list = expand_groups_in_paired_modules_list(paired_modules_list) name_to_module: dict[str, torch.nn.Module] = {} previous_name_to_module: dict[str, Any] = {} name_set = set(chain.from_iterable(paired_modules_list)) for name, module in model.named_modules(): if name in name_set: name_to_module[name] = module previous_name_to_module[name] = None while not converged(name_to_module, previous_name_to_module, threshold): for pair in paired_modules_list: previous_name_to_module[pair[0]] = copy.deepcopy(name_to_module[pair[0]]) previous_name_to_module[pair[1]] = copy.deepcopy(name_to_module[pair[1]]) cross_layer_equalization(name_to_module[pair[0]], name_to_module[pair[1]]) return model def converged(curr_modules, prev_modules, threshold=1e-4): """Test whether modules are converged to a specified threshold. Tests for the summed norm of the differences between each set of modules being less than the given threshold Takes two dictionaries mapping names to modules, the set of names for each dictionary should be the same, looping over the set of names, for each name take the difference between the associated modules in each dictionary """ if curr_modules.keys() != prev_modules.keys(): raise ValueError( "The keys to the given mappings must have the same set of names of modules" ) summed_norms = torch.tensor(0.0) if None in prev_modules.values(): return False for name in curr_modules.keys(): curr_weight = get_module_weight(curr_modules[name]) prev_weight = get_module_weight(prev_modules[name]) difference = curr_weight.sub(prev_weight) summed_norms += torch.norm(difference) return bool(summed_norms < threshold)