# coding=utf-8 # Copyright 2024 The Kyutai and HuggingFace Inc. teams. All rights reserved. # # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import math from typing import Optional import torch import torch.nn as nn import torch.utils.checkpoint from ...utils import logging from ..gemma.modeling_gemma import GemmaForCausalLM, GemmaForSequenceClassification, GemmaForTokenClassification from ..granite.modeling_granite import GraniteAttention from ..llama.modeling_llama import LlamaDecoderLayer, LlamaMLP, LlamaModel, LlamaPreTrainedModel, LlamaRotaryEmbedding from .configuration_helium import HeliumConfig logger = logging.get_logger(__name__) class HeliumRMSNorm(nn.Module): def __init__(self, hidden_size, eps=1e-6): super().__init__() self.weight = nn.Parameter(torch.ones(hidden_size)) self.variance_epsilon = eps def forward(self, hidden_states): input_dtype = hidden_states.dtype hidden_states = hidden_states.to(torch.float32) variance = hidden_states.pow(2).mean(-1, keepdim=True) hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon) return (self.weight.to(torch.float32) * hidden_states).to(input_dtype) def extra_repr(self): return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}" class HeliumRotaryEmbedding(LlamaRotaryEmbedding): pass class HeliumMLP(LlamaMLP): pass def rotate_half(x): """Rotates half the hidden dims of the input.""" x1 = x[..., 0::2] x2 = x[..., 1::2] return torch.stack((-x2, x1), dim=-1).flatten(-2) def apply_rotary_pos_emb(q, k, cos, sin, position_ids=None, unsqueeze_dim=1): """Applies Rotary Position Embedding to the query and key tensors. Args: q (`torch.Tensor`): The query tensor. k (`torch.Tensor`): The key tensor. cos (`torch.Tensor`): The cosine part of the rotary embedding. sin (`torch.Tensor`): The sine part of the rotary embedding. position_ids (`torch.Tensor`, *optional*): Deprecated and unused. unsqueeze_dim (`int`, *optional*, defaults to 1): The 'unsqueeze_dim' argument specifies the dimension along which to unsqueeze cos[position_ids] and sin[position_ids] so that they can be properly broadcasted to the dimensions of q and k. For example, note that cos[position_ids] and sin[position_ids] have the shape [batch_size, seq_len, head_dim]. Then, if q and k have the shape [batch_size, heads, seq_len, head_dim], then setting unsqueeze_dim=1 makes cos[position_ids] and sin[position_ids] broadcastable to the shapes of q and k. Similarly, if q and k have the shape [batch_size, seq_len, heads, head_dim], then set unsqueeze_dim=2. Returns: `tuple(torch.Tensor)` comprising of the query and key tensors rotated using the Rotary Position Embedding. """ cos = cos.unsqueeze(unsqueeze_dim) sin = sin.unsqueeze(unsqueeze_dim) # Interleave them instead of usual shape cos = cos[..., : cos.shape[-1] // 2].repeat_interleave(2, dim=-1) sin = sin[..., : sin.shape[-1] // 2].repeat_interleave(2, dim=-1) q_embed = (q * cos) + (rotate_half(q) * sin) k_embed = (k * cos) + (rotate_half(k) * sin) return q_embed, k_embed class HeliumAttention(GraniteAttention): def __init__(self, config: HeliumConfig, layer_idx: Optional[int] = None): super().__init__(config, layer_idx) self.o_proj = nn.Linear(config.hidden_size, config.hidden_size, bias=False) self.scaling = 1 / math.sqrt(self.head_dim) class HeliumDecoderLayer(LlamaDecoderLayer): def __init__(self, config: HeliumConfig, layer_idx: Optional[int] = None): super().__init__() self.mlp = HeliumMLP(config) self.input_layernorm = HeliumRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.post_attention_layernorm = HeliumRMSNorm(config.hidden_size, eps=config.rms_norm_eps) class HeliumPreTrainedModel(LlamaPreTrainedModel): pass class HeliumModel(HeliumPreTrainedModel, LlamaModel): def __init__(self, config: HeliumConfig): super().__init__(config) self.layers = nn.ModuleList( [HeliumDecoderLayer(config, layer_idx) for layer_idx in range(config.num_hidden_layers)] ) self.norm = HeliumRMSNorm(config.hidden_size, eps=config.rms_norm_eps) self.rotary_emb = HeliumRotaryEmbedding(config) self.gradient_checkpointing = False # Initialize weights and apply final processing self.post_init() class HeliumForCausalLM(GemmaForCausalLM): pass class HeliumForSequenceClassification(GemmaForSequenceClassification): pass class HeliumForTokenClassification(GemmaForTokenClassification): pass __all__ = [ "HeliumPreTrainedModel", "HeliumModel", "HeliumForCausalLM", "HeliumForSequenceClassification", "HeliumForTokenClassification", ]