# coding=utf-8 # Copyright 2023 the HuggingFace Inc. team. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import Optional, Union import torch from torch import nn from transformers.models.llava.modeling_llava import ( LlavaCausalLMOutputWithPast, LlavaForConditionalGeneration, LlavaModel, LlavaModelOutputWithPast, LlavaPreTrainedModel, ) from ...activations import ACT2FN from ...cache_utils import Cache from ...utils import auto_docstring, is_torchdynamo_compiling, logging from .configuration_vipllava import VipLlavaConfig logger = logging.get_logger(__name__) class VipLlavaModelOutputWithPast(LlavaModelOutputWithPast): pass class VipLlavaCausalLMOutputWithPast(LlavaCausalLMOutputWithPast): pass class VipLlavaMultiModalProjector(nn.Module): def __init__(self, config: VipLlavaConfig): super().__init__() num_feature_layers = 1 if isinstance(config.vision_feature_layers, int) else len(config.vision_feature_layers) self.projector_layernorm = nn.LayerNorm( num_feature_layers * config.vision_config.hidden_size, eps=config.projector_layernorm_eps ) self.linear_1 = nn.Linear( num_feature_layers * config.vision_config.hidden_size, config.text_config.hidden_size, bias=True, ) self.act = ACT2FN[config.projector_hidden_act] self.linear_2 = nn.Linear(config.text_config.hidden_size, config.text_config.hidden_size, bias=True) def forward(self, hidden_states): hidden_states = self.projector_layernorm(hidden_states) hidden_states = self.linear_1(hidden_states) hidden_states = self.act(hidden_states) hidden_states = self.linear_2(hidden_states) return hidden_states class VipLlavaPreTrainedModel(LlavaPreTrainedModel): pass class VipLlavaModel(LlavaModel): def get_image_features( self, pixel_values: torch.FloatTensor, vision_feature_layers: Optional[Union[int, list[int]]] = None ): """ Obtains image last hidden states from the vision tower and apply multimodal projection. Args: pixel_values (`torch.FloatTensor]` of shape `(batch_size, channels, height, width)`) The tensors corresponding to the input images. vision_feature_layers (`Union[int, list[int]]`): The vision feature layer, or the list of indexes of the layers to select the vision feature. Returns: image_features (`torch.Tensor`): Image feature tensor of shape `(num_images, image_length, embed_dim)`). """ vision_feature_layers = ( vision_feature_layers if vision_feature_layers is not None else self.config.vision_feature_layers ) image_outputs = self.vision_tower(pixel_values, output_hidden_states=True) # If multiple feature layers are provided (which is usually the case) # then the image features are concatenated after the CLS is removed. if isinstance(vision_feature_layers, int): image_features = image_outputs.hidden_states[vision_feature_layers][:, 1:] else: # Usually, we select the features from index 1: the layers -2, -5, -8, -11 and 6 image_features = [image_outputs.hidden_states[index][:, 1:] for index in vision_feature_layers] image_features = torch.cat(image_features, dim=-1) image_features = self.multi_modal_projector(image_features) return image_features @auto_docstring def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, vision_feature_layers: Optional[Union[int, list[int]]] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, **lm_kwargs, ) -> Union[tuple, VipLlavaModelOutputWithPast]: r""" vision_feature_layers (`Union[int, list[int]]`, *optional*): The vision feature layer, or the list of indexes of the layers to select the vision feature. """ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_feature_layers = ( vision_feature_layers if vision_feature_layers is not None else self.config.vision_feature_layers ) if (input_ids is None) ^ (inputs_embeds is not None): raise ValueError("You must specify exactly one of input_ids or inputs_embeds") if inputs_embeds is None: inputs_embeds = self.get_input_embeddings()(input_ids) if pixel_values is not None: image_features = self.get_image_features( pixel_values=pixel_values, vision_feature_layers=vision_feature_layers ) if input_ids is None: special_image_mask = inputs_embeds == self.get_input_embeddings()( torch.tensor(self.config.image_token_id, dtype=torch.long, device=inputs_embeds.device) ) special_image_mask = special_image_mask.all(-1) else: special_image_mask = input_ids == self.config.image_token_id n_image_tokens = (special_image_mask).sum() special_image_mask = special_image_mask.unsqueeze(-1).expand_as(inputs_embeds).to(inputs_embeds.device) if not is_torchdynamo_compiling() and inputs_embeds[special_image_mask].numel() != image_features.numel(): n_image_features = image_features.shape[0] * image_features.shape[1] raise ValueError( f"Image features and image tokens do not match: tokens: {n_image_tokens}, features {n_image_features}" ) image_features = image_features.to(inputs_embeds.device, inputs_embeds.dtype) inputs_embeds = inputs_embeds.masked_scatter(special_image_mask, image_features) outputs = self.language_model( attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, cache_position=cache_position, **lm_kwargs, ) output = VipLlavaModelOutputWithPast( last_hidden_state=outputs.last_hidden_state, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=image_features if pixel_values is not None else None, ) return output if return_dict else output.to_tuple() class VipLlavaForConditionalGeneration(LlavaForConditionalGeneration): def get_image_features( self, pixel_values: torch.FloatTensor, vision_feature_layers: Optional[Union[int, list[int]]] = None ): return self.model.get_image_features(pixel_values=pixel_values, vision_feature_layers=vision_feature_layers) def forward( self, input_ids: torch.LongTensor = None, pixel_values: torch.FloatTensor = None, attention_mask: Optional[torch.Tensor] = None, position_ids: Optional[torch.LongTensor] = None, past_key_values: Optional[Cache] = None, inputs_embeds: Optional[torch.FloatTensor] = None, vision_feature_layers: Optional[Union[int, list[int]]] = None, labels: Optional[torch.LongTensor] = None, use_cache: Optional[bool] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, return_dict: Optional[bool] = None, cache_position: Optional[torch.LongTensor] = None, logits_to_keep: Union[int, torch.Tensor] = 0, **lm_kwargs, ) -> Union[tuple, VipLlavaCausalLMOutputWithPast]: r""" vision_feature_layers (`Union[int, list[int]]`, *optional*): The vision feature layer, or the list of indexes of the layers to select the vision feature. labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*): Labels for computing the masked language modeling loss. Indices should either be in `[0, ..., config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`. Example: ```python >>> import torch >>> from PIL import Image >>> import requests >>> from transformers import AutoProcessor, VipLlavaForConditionalGeneration >>> model = VipLlavaForConditionalGeneration.from_pretrained("llava-hf/vip-llava-7b-hf", device_map="auto", torch_dtype=torch.float16) >>> processor = AutoProcessor.from_pretrained("llava-hf/vip-llava-7b-hf") >>> prompt = "A chat between a curious human and an artificial intelligence assistant. The assistant gives helpful, detailed, and polite answers to the human's questions.###Human: \n{}###Assistant:" >>> question = "Can you please describe this image?" >>> prompt = prompt.format(question) >>> url = "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/compel-neg.png" >>> image = Image.open(requests.get(url, stream=True).raw) >>> inputs = processor(text=text, images=image, return_tensors="pt").to(0, torch.float16) >>> # Generate >>> generate_ids = model.generate(**inputs, max_new_tokens=20) >>> processor.decode(generate_ids[0][len(inputs["input_ids"][0]):], skip_special_tokens=True) The image features a brown and white cat sitting on a green surface, with a red ball in its ```""" output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states ) return_dict = return_dict if return_dict is not None else self.config.use_return_dict vision_feature_layers = ( vision_feature_layers if vision_feature_layers is not None else self.config.vision_feature_layers ) outputs = self.model( input_ids=input_ids, pixel_values=pixel_values, attention_mask=attention_mask, position_ids=position_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, use_cache=use_cache, vision_feature_layers=vision_feature_layers, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=True, cache_position=cache_position, **lm_kwargs, ) hidden_states = outputs[0] # Only compute necessary logits, and do not upcast them to float if we are not computing the loss slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep logits = self.lm_head(hidden_states[:, slice_indices, :]) loss = None if labels is not None: loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.text_config.vocab_size) return VipLlavaCausalLMOutputWithPast( loss=loss, logits=logits, past_key_values=outputs.past_key_values, hidden_states=outputs.hidden_states, attentions=outputs.attentions, image_hidden_states=outputs.image_hidden_states, ) __all__ = ["VipLlavaModel", "VipLlavaForConditionalGeneration", "VipLlavaPreTrainedModel"]