from typing import Optional, Union import torch import torch.nn as nn from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss from transformers.models.ijepa.configuration_ijepa import IJepaConfig from ...modeling_outputs import ImageClassifierOutput from ...modeling_utils import PreTrainedModel from ...utils import auto_docstring, torch_int from ..vit.modeling_vit import ViTEmbeddings, ViTForImageClassification, ViTModel class IJepaEmbeddings(ViTEmbeddings): def __init__(self, config: IJepaConfig, use_mask_token: bool = False) -> None: super().__init__(config, use_mask_token) # Remove cls_token from IJepaEmbeddings, as it is not used in the model del self.cls_token num_patches = self.patch_embeddings.num_patches self.position_embeddings = nn.Parameter(torch.randn(1, num_patches, config.hidden_size)) def interpolate_pos_encoding(self, embeddings: torch.Tensor, height: int, width: int) -> torch.Tensor: """ This method allows to interpolate the pre-trained position encodings, to be able to use the model on higher resolution images. This method is also adapted to support torch.jit tracing. Adapted from: - https://github.com/facebookresearch/dino/blob/de9ee3df6cf39fac952ab558447af1fa1365362a/vision_transformer.py#L174-L194, and - https://github.com/facebookresearch/dinov2/blob/e1277af2ba9496fbadf7aec6eba56e8d882d1e35/dinov2/models/vision_transformer.py#L179-L211 """ num_patches = embeddings.shape[1] num_positions = self.position_embeddings.shape[1] # always interpolate when tracing to ensure the exported model works for dynamic input shapes if not torch.jit.is_tracing() and num_patches == num_positions and height == width: return self.position_embeddings patch_pos_embed = self.position_embeddings dim = embeddings.shape[-1] new_height = height // self.patch_size new_width = width // self.patch_size sqrt_num_positions = torch_int(num_positions**0.5) patch_pos_embed = patch_pos_embed.reshape(1, sqrt_num_positions, sqrt_num_positions, dim) patch_pos_embed = patch_pos_embed.permute(0, 3, 1, 2) patch_pos_embed = nn.functional.interpolate( patch_pos_embed, size=(new_height, new_width), mode="bicubic", align_corners=False, ) patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) return patch_pos_embed def forward( self, pixel_values: torch.Tensor, bool_masked_pos: Optional[torch.BoolTensor] = None, interpolate_pos_encoding: bool = False, ) -> torch.Tensor: batch_size, _, height, width = pixel_values.shape embeddings = self.patch_embeddings(pixel_values, interpolate_pos_encoding=interpolate_pos_encoding) if bool_masked_pos is not None: seq_length = embeddings.shape[1] mask_tokens = self.mask_token.expand(batch_size, seq_length, -1) # replace the masked visual tokens by mask_tokens mask = bool_masked_pos.unsqueeze(-1).type_as(mask_tokens) embeddings = embeddings * (1.0 - mask) + mask_tokens * mask # add positional encoding to each token if interpolate_pos_encoding: embeddings = embeddings + self.interpolate_pos_encoding(embeddings, height, width) else: embeddings = embeddings + self.position_embeddings embeddings = self.dropout(embeddings) return embeddings @auto_docstring class IJepaPreTrainedModel(PreTrainedModel): config: IJepaConfig base_model_prefix = "ijepa" main_input_name = "pixel_values" supports_gradient_checkpointing = True _no_split_modules = ["IJepaEmbeddings", "IJepaLayer"] _supports_sdpa = True _supports_flash_attn = True _supports_flex_attn = True _supports_attention_backend = True def _init_weights(self, module: Union[nn.Linear, nn.Conv2d, nn.LayerNorm]) -> None: """Initialize the weights""" if isinstance(module, (nn.Linear, nn.Conv2d)): # Upcast the input in `fp32` and cast it back to desired `dtype` to avoid # `trunc_normal_cpu` not implemented in `half` issues module.weight.data = nn.init.trunc_normal_( module.weight.data.to(torch.float32), mean=0.0, std=self.config.initializer_range ).to(module.weight.dtype) if module.bias is not None: module.bias.data.zero_() elif isinstance(module, nn.LayerNorm): module.bias.data.zero_() module.weight.data.fill_(1.0) elif isinstance(module, IJepaEmbeddings): module.position_embeddings.data = nn.init.trunc_normal_( module.position_embeddings.data.to(torch.float32), mean=0.0, std=self.config.initializer_range, ).to(module.position_embeddings.dtype) if module.mask_token is not None: module.mask_token.data.zero_() class IJepaModel(IJepaPreTrainedModel, ViTModel): def __init__(self, config: IJepaConfig, add_pooling_layer: bool = False, use_mask_token: bool = False): r""" add_pooling_layer (bool, *optional*, defaults to `True`): Whether to add a pooling layer use_mask_token (`bool`, *optional*, defaults to `False`): Whether to use a mask token for masked image modeling. """ super().__init__(config) self.config = config self.embeddings = IJepaEmbeddings(config, use_mask_token=use_mask_token) @auto_docstring( custom_intro=""" IJepa Model transformer with an image classification head on top (a linear layer on top of the final hidden states) e.g. for ImageNet. Note that it's possible to fine-tune IJepa on higher resolution images than the ones it has been trained on, by setting `interpolate_pos_encoding` to `True` in the forward of the model. This will interpolate the pre-trained position embeddings to the higher resolution. """ ) class IJepaForImageClassification(IJepaPreTrainedModel, ViTForImageClassification): def __init__(self, config: IJepaConfig): super().__init__(config) self.ijepa = IJepaModel(config, add_pooling_layer=False) self.post_init() def forward( self, pixel_values: Optional[torch.Tensor] = None, head_mask: Optional[torch.Tensor] = None, labels: Optional[torch.Tensor] = None, output_attentions: Optional[bool] = None, output_hidden_states: Optional[bool] = None, interpolate_pos_encoding: Optional[bool] = None, return_dict: Optional[bool] = None, ) -> Union[tuple, ImageClassifierOutput]: r""" labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*): Labels for computing the image classification/regression loss. Indices should be in `[0, ..., config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If `config.num_labels > 1` a classification loss is computed (Cross-Entropy). """ return_dict = return_dict if return_dict is not None else self.config.use_return_dict outputs = self.ijepa( pixel_values, head_mask=head_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, interpolate_pos_encoding=interpolate_pos_encoding, return_dict=return_dict, ) sequence_output = outputs[0] logits = self.classifier(sequence_output.mean(dim=1)) loss = None if labels is not None: # move labels to correct device to enable model parallelism labels = labels.to(logits.device) if self.config.problem_type is None: if self.num_labels == 1: self.config.problem_type = "regression" elif self.num_labels > 1 and (labels.dtype == torch.long or labels.dtype == torch.int): self.config.problem_type = "single_label_classification" else: self.config.problem_type = "multi_label_classification" if self.config.problem_type == "regression": loss_fct = MSELoss() if self.num_labels == 1: loss = loss_fct(logits.squeeze(), labels.squeeze()) else: loss = loss_fct(logits, labels) elif self.config.problem_type == "single_label_classification": loss_fct = CrossEntropyLoss() loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1)) elif self.config.problem_type == "multi_label_classification": loss_fct = BCEWithLogitsLoss() loss = loss_fct(logits, labels) if not return_dict: output = (logits,) + outputs[1:] return ((loss,) + output) if loss is not None else output return ImageClassifierOutput( loss=loss, logits=logits, hidden_states=outputs.hidden_states, attentions=outputs.attentions, ) __all__ = [ "IJepaPreTrainedModel", "IJepaModel", "IJepaForImageClassification", ]