170 lines
8.3 KiB
Python
170 lines
8.3 KiB
Python
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from contextlib import nullcontext
|
|
from typing import Dict
|
|
|
|
from ..models.attention_processor import SD3IPAdapterJointAttnProcessor2_0
|
|
from ..models.embeddings import IPAdapterTimeImageProjection
|
|
from ..models.modeling_utils import _LOW_CPU_MEM_USAGE_DEFAULT, load_model_dict_into_meta
|
|
from ..utils import is_accelerate_available, is_torch_version, logging
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class SD3Transformer2DLoadersMixin:
|
|
"""Load IP-Adapters and LoRA layers into a `[SD3Transformer2DModel]`."""
|
|
|
|
def _convert_ip_adapter_attn_to_diffusers(
|
|
self, state_dict: Dict, low_cpu_mem_usage: bool = _LOW_CPU_MEM_USAGE_DEFAULT
|
|
) -> Dict:
|
|
if low_cpu_mem_usage:
|
|
if is_accelerate_available():
|
|
from accelerate import init_empty_weights
|
|
|
|
else:
|
|
low_cpu_mem_usage = False
|
|
logger.warning(
|
|
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
|
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
|
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
|
" install accelerate\n```\n."
|
|
)
|
|
|
|
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
|
raise NotImplementedError(
|
|
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
|
" `low_cpu_mem_usage=False`."
|
|
)
|
|
|
|
# IP-Adapter cross attention parameters
|
|
hidden_size = self.config.attention_head_dim * self.config.num_attention_heads
|
|
ip_hidden_states_dim = self.config.attention_head_dim * self.config.num_attention_heads
|
|
timesteps_emb_dim = state_dict["0.norm_ip.linear.weight"].shape[1]
|
|
|
|
# Dict where key is transformer layer index, value is attention processor's state dict
|
|
# ip_adapter state dict keys example: "0.norm_ip.linear.weight"
|
|
layer_state_dict = {idx: {} for idx in range(len(self.attn_processors))}
|
|
for key, weights in state_dict.items():
|
|
idx, name = key.split(".", maxsplit=1)
|
|
layer_state_dict[int(idx)][name] = weights
|
|
|
|
# Create IP-Adapter attention processor & load state_dict
|
|
attn_procs = {}
|
|
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
|
|
for idx, name in enumerate(self.attn_processors.keys()):
|
|
with init_context():
|
|
attn_procs[name] = SD3IPAdapterJointAttnProcessor2_0(
|
|
hidden_size=hidden_size,
|
|
ip_hidden_states_dim=ip_hidden_states_dim,
|
|
head_dim=self.config.attention_head_dim,
|
|
timesteps_emb_dim=timesteps_emb_dim,
|
|
)
|
|
|
|
if not low_cpu_mem_usage:
|
|
attn_procs[name].load_state_dict(layer_state_dict[idx], strict=True)
|
|
else:
|
|
device_map = {"": self.device}
|
|
load_model_dict_into_meta(
|
|
attn_procs[name], layer_state_dict[idx], device_map=device_map, dtype=self.dtype
|
|
)
|
|
|
|
return attn_procs
|
|
|
|
def _convert_ip_adapter_image_proj_to_diffusers(
|
|
self, state_dict: Dict, low_cpu_mem_usage: bool = _LOW_CPU_MEM_USAGE_DEFAULT
|
|
) -> IPAdapterTimeImageProjection:
|
|
if low_cpu_mem_usage:
|
|
if is_accelerate_available():
|
|
from accelerate import init_empty_weights
|
|
|
|
else:
|
|
low_cpu_mem_usage = False
|
|
logger.warning(
|
|
"Cannot initialize model with low cpu memory usage because `accelerate` was not found in the"
|
|
" environment. Defaulting to `low_cpu_mem_usage=False`. It is strongly recommended to install"
|
|
" `accelerate` for faster and less memory-intense model loading. You can do so with: \n```\npip"
|
|
" install accelerate\n```\n."
|
|
)
|
|
|
|
if low_cpu_mem_usage is True and not is_torch_version(">=", "1.9.0"):
|
|
raise NotImplementedError(
|
|
"Low memory initialization requires torch >= 1.9.0. Please either update your PyTorch version or set"
|
|
" `low_cpu_mem_usage=False`."
|
|
)
|
|
|
|
init_context = init_empty_weights if low_cpu_mem_usage else nullcontext
|
|
|
|
# Convert to diffusers
|
|
updated_state_dict = {}
|
|
for key, value in state_dict.items():
|
|
# InstantX/SD3.5-Large-IP-Adapter
|
|
if key.startswith("layers."):
|
|
idx = key.split(".")[1]
|
|
key = key.replace(f"layers.{idx}.0.norm1", f"layers.{idx}.ln0")
|
|
key = key.replace(f"layers.{idx}.0.norm2", f"layers.{idx}.ln1")
|
|
key = key.replace(f"layers.{idx}.0.to_q", f"layers.{idx}.attn.to_q")
|
|
key = key.replace(f"layers.{idx}.0.to_kv", f"layers.{idx}.attn.to_kv")
|
|
key = key.replace(f"layers.{idx}.0.to_out", f"layers.{idx}.attn.to_out.0")
|
|
key = key.replace(f"layers.{idx}.1.0", f"layers.{idx}.adaln_norm")
|
|
key = key.replace(f"layers.{idx}.1.1", f"layers.{idx}.ff.net.0.proj")
|
|
key = key.replace(f"layers.{idx}.1.3", f"layers.{idx}.ff.net.2")
|
|
key = key.replace(f"layers.{idx}.2.1", f"layers.{idx}.adaln_proj")
|
|
updated_state_dict[key] = value
|
|
|
|
# Image projection parameters
|
|
embed_dim = updated_state_dict["proj_in.weight"].shape[1]
|
|
output_dim = updated_state_dict["proj_out.weight"].shape[0]
|
|
hidden_dim = updated_state_dict["proj_in.weight"].shape[0]
|
|
heads = updated_state_dict["layers.0.attn.to_q.weight"].shape[0] // 64
|
|
num_queries = updated_state_dict["latents"].shape[1]
|
|
timestep_in_dim = updated_state_dict["time_embedding.linear_1.weight"].shape[1]
|
|
|
|
# Image projection
|
|
with init_context():
|
|
image_proj = IPAdapterTimeImageProjection(
|
|
embed_dim=embed_dim,
|
|
output_dim=output_dim,
|
|
hidden_dim=hidden_dim,
|
|
heads=heads,
|
|
num_queries=num_queries,
|
|
timestep_in_dim=timestep_in_dim,
|
|
)
|
|
|
|
if not low_cpu_mem_usage:
|
|
image_proj.load_state_dict(updated_state_dict, strict=True)
|
|
else:
|
|
device_map = {"": self.device}
|
|
load_model_dict_into_meta(image_proj, updated_state_dict, device_map=device_map, dtype=self.dtype)
|
|
|
|
return image_proj
|
|
|
|
def _load_ip_adapter_weights(self, state_dict: Dict, low_cpu_mem_usage: bool = _LOW_CPU_MEM_USAGE_DEFAULT) -> None:
|
|
"""Sets IP-Adapter attention processors, image projection, and loads state_dict.
|
|
|
|
Args:
|
|
state_dict (`Dict`):
|
|
State dict with keys "ip_adapter", which contains parameters for attention processors, and
|
|
"image_proj", which contains parameters for image projection net.
|
|
low_cpu_mem_usage (`bool`, *optional*, defaults to `True` if torch version >= 1.9.0 else `False`):
|
|
Speed up model loading only loading the pretrained weights and not initializing the weights. This also
|
|
tries to not use more than 1x model size in CPU memory (including peak memory) while loading the model.
|
|
Only supported for PyTorch >= 1.9.0. If you are using an older version of PyTorch, setting this
|
|
argument to `True` will raise an error.
|
|
"""
|
|
|
|
attn_procs = self._convert_ip_adapter_attn_to_diffusers(state_dict["ip_adapter"], low_cpu_mem_usage)
|
|
self.set_attn_processor(attn_procs)
|
|
|
|
self.image_proj = self._convert_ip_adapter_image_proj_to_diffusers(state_dict["image_proj"], low_cpu_mem_usage)
|