354 lines
16 KiB
Python
354 lines
16 KiB
Python
# Copyright 2025 The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from dataclasses import dataclass
|
|
from typing import Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
|
|
from ...configuration_utils import ConfigMixin, register_to_config
|
|
from ...utils import BaseOutput
|
|
from ..embeddings import GaussianFourierProjection, TimestepEmbedding, Timesteps
|
|
from ..modeling_utils import ModelMixin
|
|
from .unet_2d_blocks import UNetMidBlock2D, get_down_block, get_up_block
|
|
|
|
|
|
@dataclass
|
|
class UNet2DOutput(BaseOutput):
|
|
"""
|
|
The output of [`UNet2DModel`].
|
|
|
|
Args:
|
|
sample (`torch.Tensor` of shape `(batch_size, num_channels, height, width)`):
|
|
The hidden states output from the last layer of the model.
|
|
"""
|
|
|
|
sample: torch.Tensor
|
|
|
|
|
|
class UNet2DModel(ModelMixin, ConfigMixin):
|
|
r"""
|
|
A 2D UNet model that takes a noisy sample and a timestep and returns a sample shaped output.
|
|
|
|
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
|
for all models (such as downloading or saving).
|
|
|
|
Parameters:
|
|
sample_size (`int` or `Tuple[int, int]`, *optional*, defaults to `None`):
|
|
Height and width of input/output sample. Dimensions must be a multiple of `2 ** (len(block_out_channels) -
|
|
1)`.
|
|
in_channels (`int`, *optional*, defaults to 3): Number of channels in the input sample.
|
|
out_channels (`int`, *optional*, defaults to 3): Number of channels in the output.
|
|
center_input_sample (`bool`, *optional*, defaults to `False`): Whether to center the input sample.
|
|
time_embedding_type (`str`, *optional*, defaults to `"positional"`): Type of time embedding to use.
|
|
freq_shift (`int`, *optional*, defaults to 0): Frequency shift for Fourier time embedding.
|
|
flip_sin_to_cos (`bool`, *optional*, defaults to `True`):
|
|
Whether to flip sin to cos for Fourier time embedding.
|
|
down_block_types (`Tuple[str]`, *optional*, defaults to `("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D")`):
|
|
Tuple of downsample block types.
|
|
mid_block_type (`str`, *optional*, defaults to `"UNetMidBlock2D"`):
|
|
Block type for middle of UNet, it can be either `UNetMidBlock2D` or `None`.
|
|
up_block_types (`Tuple[str]`, *optional*, defaults to `("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D")`):
|
|
Tuple of upsample block types.
|
|
block_out_channels (`Tuple[int]`, *optional*, defaults to `(224, 448, 672, 896)`):
|
|
Tuple of block output channels.
|
|
layers_per_block (`int`, *optional*, defaults to `2`): The number of layers per block.
|
|
mid_block_scale_factor (`float`, *optional*, defaults to `1`): The scale factor for the mid block.
|
|
downsample_padding (`int`, *optional*, defaults to `1`): The padding for the downsample convolution.
|
|
downsample_type (`str`, *optional*, defaults to `conv`):
|
|
The downsample type for downsampling layers. Choose between "conv" and "resnet"
|
|
upsample_type (`str`, *optional*, defaults to `conv`):
|
|
The upsample type for upsampling layers. Choose between "conv" and "resnet"
|
|
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
|
|
act_fn (`str`, *optional*, defaults to `"silu"`): The activation function to use.
|
|
attention_head_dim (`int`, *optional*, defaults to `8`): The attention head dimension.
|
|
norm_num_groups (`int`, *optional*, defaults to `32`): The number of groups for normalization.
|
|
attn_norm_num_groups (`int`, *optional*, defaults to `None`):
|
|
If set to an integer, a group norm layer will be created in the mid block's [`Attention`] layer with the
|
|
given number of groups. If left as `None`, the group norm layer will only be created if
|
|
`resnet_time_scale_shift` is set to `default`, and if created will have `norm_num_groups` groups.
|
|
norm_eps (`float`, *optional*, defaults to `1e-5`): The epsilon for normalization.
|
|
resnet_time_scale_shift (`str`, *optional*, defaults to `"default"`): Time scale shift config
|
|
for ResNet blocks (see [`~models.resnet.ResnetBlock2D`]). Choose from `default` or `scale_shift`.
|
|
class_embed_type (`str`, *optional*, defaults to `None`):
|
|
The type of class embedding to use which is ultimately summed with the time embeddings. Choose from `None`,
|
|
`"timestep"`, or `"identity"`.
|
|
num_class_embeds (`int`, *optional*, defaults to `None`):
|
|
Input dimension of the learnable embedding matrix to be projected to `time_embed_dim` when performing class
|
|
conditioning with `class_embed_type` equal to `None`.
|
|
"""
|
|
|
|
_supports_gradient_checkpointing = True
|
|
_skip_layerwise_casting_patterns = ["norm"]
|
|
|
|
@register_to_config
|
|
def __init__(
|
|
self,
|
|
sample_size: Optional[Union[int, Tuple[int, int]]] = None,
|
|
in_channels: int = 3,
|
|
out_channels: int = 3,
|
|
center_input_sample: bool = False,
|
|
time_embedding_type: str = "positional",
|
|
time_embedding_dim: Optional[int] = None,
|
|
freq_shift: int = 0,
|
|
flip_sin_to_cos: bool = True,
|
|
down_block_types: Tuple[str, ...] = ("DownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D", "AttnDownBlock2D"),
|
|
mid_block_type: Optional[str] = "UNetMidBlock2D",
|
|
up_block_types: Tuple[str, ...] = ("AttnUpBlock2D", "AttnUpBlock2D", "AttnUpBlock2D", "UpBlock2D"),
|
|
block_out_channels: Tuple[int, ...] = (224, 448, 672, 896),
|
|
layers_per_block: int = 2,
|
|
mid_block_scale_factor: float = 1,
|
|
downsample_padding: int = 1,
|
|
downsample_type: str = "conv",
|
|
upsample_type: str = "conv",
|
|
dropout: float = 0.0,
|
|
act_fn: str = "silu",
|
|
attention_head_dim: Optional[int] = 8,
|
|
norm_num_groups: int = 32,
|
|
attn_norm_num_groups: Optional[int] = None,
|
|
norm_eps: float = 1e-5,
|
|
resnet_time_scale_shift: str = "default",
|
|
add_attention: bool = True,
|
|
class_embed_type: Optional[str] = None,
|
|
num_class_embeds: Optional[int] = None,
|
|
num_train_timesteps: Optional[int] = None,
|
|
):
|
|
super().__init__()
|
|
|
|
self.sample_size = sample_size
|
|
time_embed_dim = time_embedding_dim or block_out_channels[0] * 4
|
|
|
|
# Check inputs
|
|
if len(down_block_types) != len(up_block_types):
|
|
raise ValueError(
|
|
f"Must provide the same number of `down_block_types` as `up_block_types`. `down_block_types`: {down_block_types}. `up_block_types`: {up_block_types}."
|
|
)
|
|
|
|
if len(block_out_channels) != len(down_block_types):
|
|
raise ValueError(
|
|
f"Must provide the same number of `block_out_channels` as `down_block_types`. `block_out_channels`: {block_out_channels}. `down_block_types`: {down_block_types}."
|
|
)
|
|
|
|
# input
|
|
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
|
|
|
|
# time
|
|
if time_embedding_type == "fourier":
|
|
self.time_proj = GaussianFourierProjection(embedding_size=block_out_channels[0], scale=16)
|
|
timestep_input_dim = 2 * block_out_channels[0]
|
|
elif time_embedding_type == "positional":
|
|
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
|
|
timestep_input_dim = block_out_channels[0]
|
|
elif time_embedding_type == "learned":
|
|
self.time_proj = nn.Embedding(num_train_timesteps, block_out_channels[0])
|
|
timestep_input_dim = block_out_channels[0]
|
|
|
|
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
|
|
|
# class embedding
|
|
if class_embed_type is None and num_class_embeds is not None:
|
|
self.class_embedding = nn.Embedding(num_class_embeds, time_embed_dim)
|
|
elif class_embed_type == "timestep":
|
|
self.class_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
|
|
elif class_embed_type == "identity":
|
|
self.class_embedding = nn.Identity(time_embed_dim, time_embed_dim)
|
|
else:
|
|
self.class_embedding = None
|
|
|
|
self.down_blocks = nn.ModuleList([])
|
|
self.mid_block = None
|
|
self.up_blocks = nn.ModuleList([])
|
|
|
|
# down
|
|
output_channel = block_out_channels[0]
|
|
for i, down_block_type in enumerate(down_block_types):
|
|
input_channel = output_channel
|
|
output_channel = block_out_channels[i]
|
|
is_final_block = i == len(block_out_channels) - 1
|
|
|
|
down_block = get_down_block(
|
|
down_block_type,
|
|
num_layers=layers_per_block,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
temb_channels=time_embed_dim,
|
|
add_downsample=not is_final_block,
|
|
resnet_eps=norm_eps,
|
|
resnet_act_fn=act_fn,
|
|
resnet_groups=norm_num_groups,
|
|
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
|
|
downsample_padding=downsample_padding,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
downsample_type=downsample_type,
|
|
dropout=dropout,
|
|
)
|
|
self.down_blocks.append(down_block)
|
|
|
|
# mid
|
|
if mid_block_type is None:
|
|
self.mid_block = None
|
|
else:
|
|
self.mid_block = UNetMidBlock2D(
|
|
in_channels=block_out_channels[-1],
|
|
temb_channels=time_embed_dim,
|
|
dropout=dropout,
|
|
resnet_eps=norm_eps,
|
|
resnet_act_fn=act_fn,
|
|
output_scale_factor=mid_block_scale_factor,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
attention_head_dim=attention_head_dim if attention_head_dim is not None else block_out_channels[-1],
|
|
resnet_groups=norm_num_groups,
|
|
attn_groups=attn_norm_num_groups,
|
|
add_attention=add_attention,
|
|
)
|
|
|
|
# up
|
|
reversed_block_out_channels = list(reversed(block_out_channels))
|
|
output_channel = reversed_block_out_channels[0]
|
|
for i, up_block_type in enumerate(up_block_types):
|
|
prev_output_channel = output_channel
|
|
output_channel = reversed_block_out_channels[i]
|
|
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
|
|
|
|
is_final_block = i == len(block_out_channels) - 1
|
|
|
|
up_block = get_up_block(
|
|
up_block_type,
|
|
num_layers=layers_per_block + 1,
|
|
in_channels=input_channel,
|
|
out_channels=output_channel,
|
|
prev_output_channel=prev_output_channel,
|
|
temb_channels=time_embed_dim,
|
|
add_upsample=not is_final_block,
|
|
resnet_eps=norm_eps,
|
|
resnet_act_fn=act_fn,
|
|
resnet_groups=norm_num_groups,
|
|
attention_head_dim=attention_head_dim if attention_head_dim is not None else output_channel,
|
|
resnet_time_scale_shift=resnet_time_scale_shift,
|
|
upsample_type=upsample_type,
|
|
dropout=dropout,
|
|
)
|
|
self.up_blocks.append(up_block)
|
|
|
|
# out
|
|
num_groups_out = norm_num_groups if norm_num_groups is not None else min(block_out_channels[0] // 4, 32)
|
|
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=num_groups_out, eps=norm_eps)
|
|
self.conv_act = nn.SiLU()
|
|
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, kernel_size=3, padding=1)
|
|
|
|
def forward(
|
|
self,
|
|
sample: torch.Tensor,
|
|
timestep: Union[torch.Tensor, float, int],
|
|
class_labels: Optional[torch.Tensor] = None,
|
|
return_dict: bool = True,
|
|
) -> Union[UNet2DOutput, Tuple]:
|
|
r"""
|
|
The [`UNet2DModel`] forward method.
|
|
|
|
Args:
|
|
sample (`torch.Tensor`):
|
|
The noisy input tensor with the following shape `(batch, channel, height, width)`.
|
|
timestep (`torch.Tensor` or `float` or `int`): The number of timesteps to denoise an input.
|
|
class_labels (`torch.Tensor`, *optional*, defaults to `None`):
|
|
Optional class labels for conditioning. Their embeddings will be summed with the timestep embeddings.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~models.unets.unet_2d.UNet2DOutput`] instead of a plain tuple.
|
|
|
|
Returns:
|
|
[`~models.unets.unet_2d.UNet2DOutput`] or `tuple`:
|
|
If `return_dict` is True, an [`~models.unets.unet_2d.UNet2DOutput`] is returned, otherwise a `tuple` is
|
|
returned where the first element is the sample tensor.
|
|
"""
|
|
# 0. center input if necessary
|
|
if self.config.center_input_sample:
|
|
sample = 2 * sample - 1.0
|
|
|
|
# 1. time
|
|
timesteps = timestep
|
|
if not torch.is_tensor(timesteps):
|
|
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
|
|
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
|
|
timesteps = timesteps[None].to(sample.device)
|
|
|
|
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
|
timesteps = timesteps * torch.ones(sample.shape[0], dtype=timesteps.dtype, device=timesteps.device)
|
|
|
|
t_emb = self.time_proj(timesteps)
|
|
|
|
# timesteps does not contain any weights and will always return f32 tensors
|
|
# but time_embedding might actually be running in fp16. so we need to cast here.
|
|
# there might be better ways to encapsulate this.
|
|
t_emb = t_emb.to(dtype=self.dtype)
|
|
emb = self.time_embedding(t_emb)
|
|
|
|
if self.class_embedding is not None:
|
|
if class_labels is None:
|
|
raise ValueError("class_labels should be provided when doing class conditioning")
|
|
|
|
if self.config.class_embed_type == "timestep":
|
|
class_labels = self.time_proj(class_labels)
|
|
|
|
class_emb = self.class_embedding(class_labels).to(dtype=self.dtype)
|
|
emb = emb + class_emb
|
|
elif self.class_embedding is None and class_labels is not None:
|
|
raise ValueError("class_embedding needs to be initialized in order to use class conditioning")
|
|
|
|
# 2. pre-process
|
|
skip_sample = sample
|
|
sample = self.conv_in(sample)
|
|
|
|
# 3. down
|
|
down_block_res_samples = (sample,)
|
|
for downsample_block in self.down_blocks:
|
|
if hasattr(downsample_block, "skip_conv"):
|
|
sample, res_samples, skip_sample = downsample_block(
|
|
hidden_states=sample, temb=emb, skip_sample=skip_sample
|
|
)
|
|
else:
|
|
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
|
|
|
|
down_block_res_samples += res_samples
|
|
|
|
# 4. mid
|
|
if self.mid_block is not None:
|
|
sample = self.mid_block(sample, emb)
|
|
|
|
# 5. up
|
|
skip_sample = None
|
|
for upsample_block in self.up_blocks:
|
|
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
|
|
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
|
|
|
|
if hasattr(upsample_block, "skip_conv"):
|
|
sample, skip_sample = upsample_block(sample, res_samples, emb, skip_sample)
|
|
else:
|
|
sample = upsample_block(sample, res_samples, emb)
|
|
|
|
# 6. post-process
|
|
sample = self.conv_norm_out(sample)
|
|
sample = self.conv_act(sample)
|
|
sample = self.conv_out(sample)
|
|
|
|
if skip_sample is not None:
|
|
sample += skip_sample
|
|
|
|
if self.config.time_embedding_type == "fourier":
|
|
timesteps = timesteps.reshape((sample.shape[0], *([1] * len(sample.shape[1:]))))
|
|
sample = sample / timesteps
|
|
|
|
if not return_dict:
|
|
return (sample,)
|
|
|
|
return UNet2DOutput(sample=sample)
|