634 lines
30 KiB
Python
634 lines
30 KiB
Python
import inspect
|
|
from typing import Callable, Dict, List, Optional, Union
|
|
|
|
import PIL
|
|
import PIL.Image
|
|
import torch
|
|
from transformers import T5EncoderModel, T5Tokenizer
|
|
|
|
from ...image_processor import VaeImageProcessor
|
|
from ...loaders import StableDiffusionLoraLoaderMixin
|
|
from ...models import Kandinsky3UNet, VQModel
|
|
from ...schedulers import DDPMScheduler
|
|
from ...utils import (
|
|
deprecate,
|
|
is_torch_xla_available,
|
|
logging,
|
|
replace_example_docstring,
|
|
)
|
|
from ...utils.torch_utils import randn_tensor
|
|
from ..pipeline_utils import DiffusionPipeline, ImagePipelineOutput
|
|
|
|
|
|
if is_torch_xla_available():
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
XLA_AVAILABLE = True
|
|
else:
|
|
XLA_AVAILABLE = False
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```py
|
|
>>> from diffusers import AutoPipelineForImage2Image
|
|
>>> from diffusers.utils import load_image
|
|
>>> import torch
|
|
|
|
>>> pipe = AutoPipelineForImage2Image.from_pretrained(
|
|
... "kandinsky-community/kandinsky-3", variant="fp16", torch_dtype=torch.float16
|
|
... )
|
|
>>> pipe.enable_model_cpu_offload()
|
|
|
|
>>> prompt = "A painting of the inside of a subway train with tiny raccoons."
|
|
>>> image = load_image(
|
|
... "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/kandinsky3/t2i.png"
|
|
... )
|
|
|
|
>>> generator = torch.Generator(device="cpu").manual_seed(0)
|
|
>>> image = pipe(prompt, image=image, strength=0.75, num_inference_steps=25, generator=generator).images[0]
|
|
```
|
|
"""
|
|
|
|
|
|
class Kandinsky3Img2ImgPipeline(DiffusionPipeline, StableDiffusionLoraLoaderMixin):
|
|
model_cpu_offload_seq = "text_encoder->movq->unet->movq"
|
|
_callback_tensor_inputs = [
|
|
"latents",
|
|
"prompt_embeds",
|
|
"negative_prompt_embeds",
|
|
"negative_attention_mask",
|
|
"attention_mask",
|
|
]
|
|
|
|
def __init__(
|
|
self,
|
|
tokenizer: T5Tokenizer,
|
|
text_encoder: T5EncoderModel,
|
|
unet: Kandinsky3UNet,
|
|
scheduler: DDPMScheduler,
|
|
movq: VQModel,
|
|
):
|
|
super().__init__()
|
|
|
|
self.register_modules(
|
|
tokenizer=tokenizer, text_encoder=text_encoder, unet=unet, scheduler=scheduler, movq=movq
|
|
)
|
|
movq_scale_factor = 2 ** (len(self.movq.config.block_out_channels) - 1) if getattr(self, "movq", None) else 8
|
|
movq_latent_channels = self.movq.config.latent_channels if getattr(self, "movq", None) else 4
|
|
self.image_processor = VaeImageProcessor(
|
|
vae_scale_factor=movq_scale_factor,
|
|
vae_latent_channels=movq_latent_channels,
|
|
resample="bicubic",
|
|
reducing_gap=1,
|
|
)
|
|
|
|
def get_timesteps(self, num_inference_steps, strength, device):
|
|
# get the original timestep using init_timestep
|
|
init_timestep = min(int(num_inference_steps * strength), num_inference_steps)
|
|
|
|
t_start = max(num_inference_steps - init_timestep, 0)
|
|
timesteps = self.scheduler.timesteps[t_start:]
|
|
|
|
return timesteps, num_inference_steps - t_start
|
|
|
|
def _process_embeds(self, embeddings, attention_mask, cut_context):
|
|
# return embeddings, attention_mask
|
|
if cut_context:
|
|
embeddings[attention_mask == 0] = torch.zeros_like(embeddings[attention_mask == 0])
|
|
max_seq_length = attention_mask.sum(-1).max() + 1
|
|
embeddings = embeddings[:, :max_seq_length]
|
|
attention_mask = attention_mask[:, :max_seq_length]
|
|
return embeddings, attention_mask
|
|
|
|
@torch.no_grad()
|
|
def encode_prompt(
|
|
self,
|
|
prompt,
|
|
do_classifier_free_guidance=True,
|
|
num_images_per_prompt=1,
|
|
device=None,
|
|
negative_prompt=None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
_cut_context=False,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
negative_attention_mask: Optional[torch.Tensor] = None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
device: (`torch.device`, *optional*):
|
|
torch device to place the resulting embeddings on
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
number of images that should be generated per prompt
|
|
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
|
whether to use classifier free guidance or not
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds`. instead. If not defined, one has to pass `negative_prompt_embeds`. instead.
|
|
Ignored when not using guidance (i.e., ignored if `guidance_scale` is less than `1`).
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
attention_mask (`torch.Tensor`, *optional*):
|
|
Pre-generated attention mask. Must provide if passing `prompt_embeds` directly.
|
|
negative_attention_mask (`torch.Tensor`, *optional*):
|
|
Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly.
|
|
"""
|
|
if prompt is not None and negative_prompt is not None:
|
|
if type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
|
|
if device is None:
|
|
device = self._execution_device
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
max_length = 128
|
|
|
|
if prompt_embeds is None:
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=max_length,
|
|
truncation=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = text_inputs.input_ids.to(device)
|
|
attention_mask = text_inputs.attention_mask.to(device)
|
|
prompt_embeds = self.text_encoder(
|
|
text_input_ids,
|
|
attention_mask=attention_mask,
|
|
)
|
|
prompt_embeds = prompt_embeds[0]
|
|
prompt_embeds, attention_mask = self._process_embeds(prompt_embeds, attention_mask, _cut_context)
|
|
prompt_embeds = prompt_embeds * attention_mask.unsqueeze(2)
|
|
|
|
if self.text_encoder is not None:
|
|
dtype = self.text_encoder.dtype
|
|
else:
|
|
dtype = None
|
|
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
|
|
|
bs_embed, seq_len, _ = prompt_embeds.shape
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
|
attention_mask = attention_mask.repeat(num_images_per_prompt, 1)
|
|
# get unconditional embeddings for classifier free guidance
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
uncond_tokens: List[str]
|
|
|
|
if negative_prompt is None:
|
|
uncond_tokens = [""] * batch_size
|
|
elif isinstance(negative_prompt, str):
|
|
uncond_tokens = [negative_prompt]
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
else:
|
|
uncond_tokens = negative_prompt
|
|
if negative_prompt is not None:
|
|
uncond_input = self.tokenizer(
|
|
uncond_tokens,
|
|
padding="max_length",
|
|
max_length=128,
|
|
truncation=True,
|
|
return_attention_mask=True,
|
|
return_tensors="pt",
|
|
)
|
|
text_input_ids = uncond_input.input_ids.to(device)
|
|
negative_attention_mask = uncond_input.attention_mask.to(device)
|
|
|
|
negative_prompt_embeds = self.text_encoder(
|
|
text_input_ids,
|
|
attention_mask=negative_attention_mask,
|
|
)
|
|
negative_prompt_embeds = negative_prompt_embeds[0]
|
|
negative_prompt_embeds = negative_prompt_embeds[:, : prompt_embeds.shape[1]]
|
|
negative_attention_mask = negative_attention_mask[:, : prompt_embeds.shape[1]]
|
|
negative_prompt_embeds = negative_prompt_embeds * negative_attention_mask.unsqueeze(2)
|
|
|
|
else:
|
|
negative_prompt_embeds = torch.zeros_like(prompt_embeds)
|
|
negative_attention_mask = torch.zeros_like(attention_mask)
|
|
|
|
if do_classifier_free_guidance:
|
|
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
|
seq_len = negative_prompt_embeds.shape[1]
|
|
|
|
negative_prompt_embeds = negative_prompt_embeds.to(dtype=dtype, device=device)
|
|
if negative_prompt_embeds.shape != prompt_embeds.shape:
|
|
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
|
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
|
negative_attention_mask = negative_attention_mask.repeat(num_images_per_prompt, 1)
|
|
|
|
# For classifier free guidance, we need to do two forward passes.
|
|
# Here we concatenate the unconditional and text embeddings into a single batch
|
|
# to avoid doing two forward passes
|
|
else:
|
|
negative_prompt_embeds = None
|
|
negative_attention_mask = None
|
|
return prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask
|
|
|
|
def prepare_latents(self, image, timestep, batch_size, num_images_per_prompt, dtype, device, generator=None):
|
|
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
|
raise ValueError(
|
|
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
|
)
|
|
|
|
image = image.to(device=device, dtype=dtype)
|
|
|
|
batch_size = batch_size * num_images_per_prompt
|
|
|
|
if image.shape[1] == 4:
|
|
init_latents = image
|
|
|
|
else:
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
elif isinstance(generator, list):
|
|
init_latents = [
|
|
self.movq.encode(image[i : i + 1]).latent_dist.sample(generator[i]) for i in range(batch_size)
|
|
]
|
|
init_latents = torch.cat(init_latents, dim=0)
|
|
else:
|
|
init_latents = self.movq.encode(image).latent_dist.sample(generator)
|
|
|
|
init_latents = self.movq.config.scaling_factor * init_latents
|
|
|
|
init_latents = torch.cat([init_latents], dim=0)
|
|
|
|
shape = init_latents.shape
|
|
noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
|
|
|
# get latents
|
|
init_latents = self.scheduler.add_noise(init_latents, noise, timestep)
|
|
|
|
latents = init_latents
|
|
|
|
return latents
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
|
def prepare_extra_step_kwargs(self, generator, eta):
|
|
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
|
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
|
# eta corresponds to η in DDIM paper: https://huggingface.co/papers/2010.02502
|
|
# and should be between [0, 1]
|
|
|
|
accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
extra_step_kwargs = {}
|
|
if accepts_eta:
|
|
extra_step_kwargs["eta"] = eta
|
|
|
|
# check if the scheduler accepts generator
|
|
accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
|
|
if accepts_generator:
|
|
extra_step_kwargs["generator"] = generator
|
|
return extra_step_kwargs
|
|
|
|
def check_inputs(
|
|
self,
|
|
prompt,
|
|
callback_steps,
|
|
negative_prompt=None,
|
|
prompt_embeds=None,
|
|
negative_prompt_embeds=None,
|
|
callback_on_step_end_tensor_inputs=None,
|
|
attention_mask=None,
|
|
negative_attention_mask=None,
|
|
):
|
|
if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
|
|
raise ValueError(
|
|
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
|
f" {type(callback_steps)}."
|
|
)
|
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all(
|
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
|
):
|
|
raise ValueError(
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
|
)
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt is None and prompt_embeds is None:
|
|
raise ValueError(
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
)
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
if negative_prompt is not None and negative_prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
|
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
|
)
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|
raise ValueError(
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|
f" {negative_prompt_embeds.shape}."
|
|
)
|
|
|
|
if negative_prompt_embeds is not None and negative_attention_mask is None:
|
|
raise ValueError("Please provide `negative_attention_mask` along with `negative_prompt_embeds`")
|
|
|
|
if negative_prompt_embeds is not None and negative_attention_mask is not None:
|
|
if negative_prompt_embeds.shape[:2] != negative_attention_mask.shape:
|
|
raise ValueError(
|
|
"`negative_prompt_embeds` and `negative_attention_mask` must have the same batch_size and token length when passed directly, but"
|
|
f" got: `negative_prompt_embeds` {negative_prompt_embeds.shape[:2]} != `negative_attention_mask`"
|
|
f" {negative_attention_mask.shape}."
|
|
)
|
|
|
|
if prompt_embeds is not None and attention_mask is None:
|
|
raise ValueError("Please provide `attention_mask` along with `prompt_embeds`")
|
|
|
|
if prompt_embeds is not None and attention_mask is not None:
|
|
if prompt_embeds.shape[:2] != attention_mask.shape:
|
|
raise ValueError(
|
|
"`prompt_embeds` and `attention_mask` must have the same batch_size and token length when passed directly, but"
|
|
f" got: `prompt_embeds` {prompt_embeds.shape[:2]} != `attention_mask`"
|
|
f" {attention_mask.shape}."
|
|
)
|
|
|
|
@property
|
|
def guidance_scale(self):
|
|
return self._guidance_scale
|
|
|
|
@property
|
|
def do_classifier_free_guidance(self):
|
|
return self._guidance_scale > 1
|
|
|
|
@property
|
|
def num_timesteps(self):
|
|
return self._num_timesteps
|
|
|
|
@torch.no_grad()
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
image: Union[torch.Tensor, PIL.Image.Image, List[torch.Tensor], List[PIL.Image.Image]] = None,
|
|
strength: float = 0.3,
|
|
num_inference_steps: int = 25,
|
|
guidance_scale: float = 3.0,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
num_images_per_prompt: Optional[int] = 1,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
negative_attention_mask: Optional[torch.Tensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
**kwargs,
|
|
):
|
|
"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
instead.
|
|
image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`):
|
|
`Image`, or tensor representing an image batch, that will be used as the starting point for the
|
|
process.
|
|
strength (`float`, *optional*, defaults to 0.8):
|
|
Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a
|
|
starting point and more noise is added the higher the `strength`. The number of denoising steps depends
|
|
on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising
|
|
process runs for the full number of iterations specified in `num_inference_steps`. A value of 1
|
|
essentially ignores `image`.
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
guidance_scale (`float`, *optional*, defaults to 3.0):
|
|
Guidance scale as defined in [Classifier-Free Diffusion
|
|
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
|
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
|
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
|
the text `prompt`, usually at the expense of lower image quality.
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of images to generate per prompt.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
attention_mask (`torch.Tensor`, *optional*):
|
|
Pre-generated attention mask. Must provide if passing `prompt_embeds` directly.
|
|
negative_attention_mask (`torch.Tensor`, *optional*):
|
|
Pre-generated negative attention mask. Must provide if passing `negative_prompt_embeds` directly.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
|
callback_on_step_end (`Callable`, *optional*):
|
|
A function that calls at the end of each denoising steps during the inference. The function is called
|
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
|
`callback_on_step_end_tensor_inputs`.
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
|
`._callback_tensor_inputs` attribute of your pipeline class.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.ImagePipelineOutput`] or `tuple`
|
|
|
|
"""
|
|
callback = kwargs.pop("callback", None)
|
|
callback_steps = kwargs.pop("callback_steps", None)
|
|
|
|
if callback is not None:
|
|
deprecate(
|
|
"callback",
|
|
"1.0.0",
|
|
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
|
)
|
|
if callback_steps is not None:
|
|
deprecate(
|
|
"callback_steps",
|
|
"1.0.0",
|
|
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`",
|
|
)
|
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all(
|
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
|
):
|
|
raise ValueError(
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
|
)
|
|
|
|
cut_context = True
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt,
|
|
callback_steps,
|
|
negative_prompt,
|
|
prompt_embeds,
|
|
negative_prompt_embeds,
|
|
callback_on_step_end_tensor_inputs,
|
|
attention_mask,
|
|
negative_attention_mask,
|
|
)
|
|
|
|
self._guidance_scale = guidance_scale
|
|
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
|
|
# 3. Encode input prompt
|
|
prompt_embeds, negative_prompt_embeds, attention_mask, negative_attention_mask = self.encode_prompt(
|
|
prompt,
|
|
self.do_classifier_free_guidance,
|
|
num_images_per_prompt=num_images_per_prompt,
|
|
device=device,
|
|
negative_prompt=negative_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
_cut_context=cut_context,
|
|
attention_mask=attention_mask,
|
|
negative_attention_mask=negative_attention_mask,
|
|
)
|
|
|
|
if self.do_classifier_free_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
|
|
attention_mask = torch.cat([negative_attention_mask, attention_mask]).bool()
|
|
if not isinstance(image, list):
|
|
image = [image]
|
|
if not all(isinstance(i, (PIL.Image.Image, torch.Tensor)) for i in image):
|
|
raise ValueError(
|
|
f"Input is in incorrect format: {[type(i) for i in image]}. Currently, we only support PIL image and pytorch tensor"
|
|
)
|
|
|
|
image = torch.cat([self.image_processor.preprocess(i) for i in image], dim=0)
|
|
image = image.to(dtype=prompt_embeds.dtype, device=device)
|
|
# 4. Prepare timesteps
|
|
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
|
timesteps, num_inference_steps = self.get_timesteps(num_inference_steps, strength, device)
|
|
# 5. Prepare latents
|
|
latents = self.movq.encode(image)["latents"]
|
|
latents = latents.repeat_interleave(num_images_per_prompt, dim=0)
|
|
latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt)
|
|
latents = self.prepare_latents(
|
|
latents, latent_timestep, batch_size, num_images_per_prompt, prompt_embeds.dtype, device, generator
|
|
)
|
|
if hasattr(self, "text_encoder_offload_hook") and self.text_encoder_offload_hook is not None:
|
|
self.text_encoder_offload_hook.offload()
|
|
|
|
# 7. Denoising loop
|
|
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
|
self._num_timesteps = len(timesteps)
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
|
|
|
# predict the noise residual
|
|
noise_pred = self.unet(
|
|
latent_model_input,
|
|
t,
|
|
encoder_hidden_states=prompt_embeds,
|
|
encoder_attention_mask=attention_mask,
|
|
)[0]
|
|
if self.do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
|
|
noise_pred = (guidance_scale + 1.0) * noise_pred_text - guidance_scale * noise_pred_uncond
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents = self.scheduler.step(
|
|
noise_pred,
|
|
t,
|
|
latents,
|
|
generator=generator,
|
|
).prev_sample
|
|
|
|
if callback_on_step_end is not None:
|
|
callback_kwargs = {}
|
|
for k in callback_on_step_end_tensor_inputs:
|
|
callback_kwargs[k] = locals()[k]
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
|
|
|
latents = callback_outputs.pop("latents", latents)
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
|
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
|
attention_mask = callback_outputs.pop("attention_mask", attention_mask)
|
|
negative_attention_mask = callback_outputs.pop("negative_attention_mask", negative_attention_mask)
|
|
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
if callback is not None and i % callback_steps == 0:
|
|
step_idx = i // getattr(self.scheduler, "order", 1)
|
|
callback(step_idx, t, latents)
|
|
|
|
if XLA_AVAILABLE:
|
|
xm.mark_step()
|
|
|
|
# post-processing
|
|
if not output_type == "latent":
|
|
image = self.movq.decode(latents, force_not_quantize=True)["sample"]
|
|
image = self.image_processor.postprocess(image, output_type)
|
|
else:
|
|
image = latents
|
|
|
|
self.maybe_free_model_hooks()
|
|
|
|
if not return_dict:
|
|
return (image,)
|
|
|
|
return ImagePipelineOutput(images=image)
|