744 lines
35 KiB
Python
744 lines
35 KiB
Python
# Copyright 2025 Genmo and The HuggingFace Team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import inspect
|
|
from typing import Any, Callable, Dict, List, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from transformers import T5EncoderModel, T5TokenizerFast
|
|
|
|
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
|
|
from ...loaders import Mochi1LoraLoaderMixin
|
|
from ...models import AutoencoderKLMochi, MochiTransformer3DModel
|
|
from ...schedulers import FlowMatchEulerDiscreteScheduler
|
|
from ...utils import (
|
|
is_torch_xla_available,
|
|
logging,
|
|
replace_example_docstring,
|
|
)
|
|
from ...utils.torch_utils import randn_tensor
|
|
from ...video_processor import VideoProcessor
|
|
from ..pipeline_utils import DiffusionPipeline
|
|
from .pipeline_output import MochiPipelineOutput
|
|
|
|
|
|
if is_torch_xla_available():
|
|
import torch_xla.core.xla_model as xm
|
|
|
|
XLA_AVAILABLE = True
|
|
else:
|
|
XLA_AVAILABLE = False
|
|
|
|
|
|
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
|
|
|
EXAMPLE_DOC_STRING = """
|
|
Examples:
|
|
```py
|
|
>>> import torch
|
|
>>> from diffusers import MochiPipeline
|
|
>>> from diffusers.utils import export_to_video
|
|
|
|
>>> pipe = MochiPipeline.from_pretrained("genmo/mochi-1-preview", torch_dtype=torch.bfloat16)
|
|
>>> pipe.enable_model_cpu_offload()
|
|
>>> pipe.enable_vae_tiling()
|
|
>>> prompt = "Close-up of a chameleon's eye, with its scaly skin changing color. Ultra high resolution 4k."
|
|
>>> frames = pipe(prompt, num_inference_steps=28, guidance_scale=3.5).frames[0]
|
|
>>> export_to_video(frames, "mochi.mp4")
|
|
```
|
|
"""
|
|
|
|
|
|
# from: https://github.com/genmoai/models/blob/075b6e36db58f1242921deff83a1066887b9c9e1/src/mochi_preview/infer.py#L77
|
|
def linear_quadratic_schedule(num_steps, threshold_noise, linear_steps=None):
|
|
if linear_steps is None:
|
|
linear_steps = num_steps // 2
|
|
linear_sigma_schedule = [i * threshold_noise / linear_steps for i in range(linear_steps)]
|
|
threshold_noise_step_diff = linear_steps - threshold_noise * num_steps
|
|
quadratic_steps = num_steps - linear_steps
|
|
quadratic_coef = threshold_noise_step_diff / (linear_steps * quadratic_steps**2)
|
|
linear_coef = threshold_noise / linear_steps - 2 * threshold_noise_step_diff / (quadratic_steps**2)
|
|
const = quadratic_coef * (linear_steps**2)
|
|
quadratic_sigma_schedule = [
|
|
quadratic_coef * (i**2) + linear_coef * i + const for i in range(linear_steps, num_steps)
|
|
]
|
|
sigma_schedule = linear_sigma_schedule + quadratic_sigma_schedule
|
|
sigma_schedule = [1.0 - x for x in sigma_schedule]
|
|
return sigma_schedule
|
|
|
|
|
|
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
|
def retrieve_timesteps(
|
|
scheduler,
|
|
num_inference_steps: Optional[int] = None,
|
|
device: Optional[Union[str, torch.device]] = None,
|
|
timesteps: Optional[List[int]] = None,
|
|
sigmas: Optional[List[float]] = None,
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
|
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
|
|
|
Args:
|
|
scheduler (`SchedulerMixin`):
|
|
The scheduler to get timesteps from.
|
|
num_inference_steps (`int`):
|
|
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
|
must be `None`.
|
|
device (`str` or `torch.device`, *optional*):
|
|
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
|
`num_inference_steps` and `sigmas` must be `None`.
|
|
sigmas (`List[float]`, *optional*):
|
|
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
|
`num_inference_steps` and `timesteps` must be `None`.
|
|
|
|
Returns:
|
|
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
|
second element is the number of inference steps.
|
|
"""
|
|
if timesteps is not None and sigmas is not None:
|
|
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
|
if timesteps is not None:
|
|
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accepts_timesteps:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" timestep schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
elif sigmas is not None:
|
|
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
|
if not accept_sigmas:
|
|
raise ValueError(
|
|
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
|
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
|
)
|
|
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
num_inference_steps = len(timesteps)
|
|
else:
|
|
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
|
timesteps = scheduler.timesteps
|
|
return timesteps, num_inference_steps
|
|
|
|
|
|
class MochiPipeline(DiffusionPipeline, Mochi1LoraLoaderMixin):
|
|
r"""
|
|
The mochi pipeline for text-to-video generation.
|
|
|
|
Reference: https://github.com/genmoai/models
|
|
|
|
Args:
|
|
transformer ([`MochiTransformer3DModel`]):
|
|
Conditional Transformer architecture to denoise the encoded video latents.
|
|
scheduler ([`FlowMatchEulerDiscreteScheduler`]):
|
|
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
|
|
vae ([`AutoencoderKLMochi`]):
|
|
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
|
|
text_encoder ([`T5EncoderModel`]):
|
|
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
|
|
the [google/t5-v1_1-xxl](https://huggingface.co/google/t5-v1_1-xxl) variant.
|
|
tokenizer (`CLIPTokenizer`):
|
|
Tokenizer of class
|
|
[CLIPTokenizer](https://huggingface.co/docs/transformers/en/model_doc/clip#transformers.CLIPTokenizer).
|
|
tokenizer (`T5TokenizerFast`):
|
|
Second Tokenizer of class
|
|
[T5TokenizerFast](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5TokenizerFast).
|
|
"""
|
|
|
|
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
|
_optional_components = []
|
|
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
|
|
|
def __init__(
|
|
self,
|
|
scheduler: FlowMatchEulerDiscreteScheduler,
|
|
vae: AutoencoderKLMochi,
|
|
text_encoder: T5EncoderModel,
|
|
tokenizer: T5TokenizerFast,
|
|
transformer: MochiTransformer3DModel,
|
|
force_zeros_for_empty_prompt: bool = False,
|
|
):
|
|
super().__init__()
|
|
|
|
self.register_modules(
|
|
vae=vae,
|
|
text_encoder=text_encoder,
|
|
tokenizer=tokenizer,
|
|
transformer=transformer,
|
|
scheduler=scheduler,
|
|
)
|
|
# TODO: determine these scaling factors from model parameters
|
|
self.vae_spatial_scale_factor = 8
|
|
self.vae_temporal_scale_factor = 6
|
|
self.patch_size = 2
|
|
|
|
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_spatial_scale_factor)
|
|
self.tokenizer_max_length = (
|
|
self.tokenizer.model_max_length if hasattr(self, "tokenizer") and self.tokenizer is not None else 256
|
|
)
|
|
self.default_height = 480
|
|
self.default_width = 848
|
|
self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt)
|
|
|
|
def _get_t5_prompt_embeds(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
num_videos_per_prompt: int = 1,
|
|
max_sequence_length: int = 256,
|
|
device: Optional[torch.device] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
):
|
|
device = device or self._execution_device
|
|
dtype = dtype or self.text_encoder.dtype
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
batch_size = len(prompt)
|
|
|
|
text_inputs = self.tokenizer(
|
|
prompt,
|
|
padding="max_length",
|
|
max_length=max_sequence_length,
|
|
truncation=True,
|
|
add_special_tokens=True,
|
|
return_tensors="pt",
|
|
)
|
|
|
|
text_input_ids = text_inputs.input_ids
|
|
prompt_attention_mask = text_inputs.attention_mask
|
|
prompt_attention_mask = prompt_attention_mask.bool().to(device)
|
|
|
|
# The original Mochi implementation zeros out empty negative prompts
|
|
# but this can lead to overflow when placing the entire pipeline under the autocast context
|
|
# adding this here so that we can enable zeroing prompts if necessary
|
|
if self.config.force_zeros_for_empty_prompt and (prompt == "" or prompt[-1] == ""):
|
|
text_input_ids = torch.zeros_like(text_input_ids, device=device)
|
|
prompt_attention_mask = torch.zeros_like(prompt_attention_mask, dtype=torch.bool, device=device)
|
|
|
|
untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
|
|
|
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
|
removed_text = self.tokenizer.batch_decode(untruncated_ids[:, max_sequence_length - 1 : -1])
|
|
logger.warning(
|
|
"The following part of your input was truncated because `max_sequence_length` is set to "
|
|
f" {max_sequence_length} tokens: {removed_text}"
|
|
)
|
|
|
|
prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=prompt_attention_mask)[0]
|
|
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
|
|
|
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
|
_, seq_len, _ = prompt_embeds.shape
|
|
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
|
|
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
|
|
|
|
prompt_attention_mask = prompt_attention_mask.view(batch_size, -1)
|
|
prompt_attention_mask = prompt_attention_mask.repeat(num_videos_per_prompt, 1)
|
|
|
|
return prompt_embeds, prompt_attention_mask
|
|
|
|
# Adapted from diffusers.pipelines.cogvideo.pipeline_cogvideox.CogVideoXPipeline.encode_prompt
|
|
def encode_prompt(
|
|
self,
|
|
prompt: Union[str, List[str]],
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
do_classifier_free_guidance: bool = True,
|
|
num_videos_per_prompt: int = 1,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
prompt_attention_mask: Optional[torch.Tensor] = None,
|
|
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
|
max_sequence_length: int = 256,
|
|
device: Optional[torch.device] = None,
|
|
dtype: Optional[torch.dtype] = None,
|
|
):
|
|
r"""
|
|
Encodes the prompt into text encoder hidden states.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
prompt to be encoded
|
|
negative_prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
|
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
|
less than `1`).
|
|
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
|
|
Whether to use classifier free guidance or not.
|
|
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
|
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
|
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
|
argument.
|
|
device: (`torch.device`, *optional*):
|
|
torch device
|
|
dtype: (`torch.dtype`, *optional*):
|
|
torch dtype
|
|
"""
|
|
device = device or self._execution_device
|
|
|
|
prompt = [prompt] if isinstance(prompt, str) else prompt
|
|
if prompt is not None:
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
if prompt_embeds is None:
|
|
prompt_embeds, prompt_attention_mask = self._get_t5_prompt_embeds(
|
|
prompt=prompt,
|
|
num_videos_per_prompt=num_videos_per_prompt,
|
|
max_sequence_length=max_sequence_length,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
|
|
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
|
negative_prompt = negative_prompt or ""
|
|
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
|
|
|
if prompt is not None and type(prompt) is not type(negative_prompt):
|
|
raise TypeError(
|
|
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
|
f" {type(prompt)}."
|
|
)
|
|
elif batch_size != len(negative_prompt):
|
|
raise ValueError(
|
|
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
|
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
|
" the batch size of `prompt`."
|
|
)
|
|
|
|
negative_prompt_embeds, negative_prompt_attention_mask = self._get_t5_prompt_embeds(
|
|
prompt=negative_prompt,
|
|
num_videos_per_prompt=num_videos_per_prompt,
|
|
max_sequence_length=max_sequence_length,
|
|
device=device,
|
|
dtype=dtype,
|
|
)
|
|
|
|
return prompt_embeds, prompt_attention_mask, negative_prompt_embeds, negative_prompt_attention_mask
|
|
|
|
def check_inputs(
|
|
self,
|
|
prompt,
|
|
height,
|
|
width,
|
|
callback_on_step_end_tensor_inputs=None,
|
|
prompt_embeds=None,
|
|
negative_prompt_embeds=None,
|
|
prompt_attention_mask=None,
|
|
negative_prompt_attention_mask=None,
|
|
):
|
|
if height % 8 != 0 or width % 8 != 0:
|
|
raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")
|
|
|
|
if callback_on_step_end_tensor_inputs is not None and not all(
|
|
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
|
|
):
|
|
raise ValueError(
|
|
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
|
|
)
|
|
|
|
if prompt is not None and prompt_embeds is not None:
|
|
raise ValueError(
|
|
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
|
" only forward one of the two."
|
|
)
|
|
elif prompt is None and prompt_embeds is None:
|
|
raise ValueError(
|
|
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
|
)
|
|
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
|
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
|
|
|
if prompt_embeds is not None and prompt_attention_mask is None:
|
|
raise ValueError("Must provide `prompt_attention_mask` when specifying `prompt_embeds`.")
|
|
|
|
if negative_prompt_embeds is not None and negative_prompt_attention_mask is None:
|
|
raise ValueError("Must provide `negative_prompt_attention_mask` when specifying `negative_prompt_embeds`.")
|
|
|
|
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
|
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
|
raise ValueError(
|
|
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
|
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
|
f" {negative_prompt_embeds.shape}."
|
|
)
|
|
if prompt_attention_mask.shape != negative_prompt_attention_mask.shape:
|
|
raise ValueError(
|
|
"`prompt_attention_mask` and `negative_prompt_attention_mask` must have the same shape when passed directly, but"
|
|
f" got: `prompt_attention_mask` {prompt_attention_mask.shape} != `negative_prompt_attention_mask`"
|
|
f" {negative_prompt_attention_mask.shape}."
|
|
)
|
|
|
|
def enable_vae_slicing(self):
|
|
r"""
|
|
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
|
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
|
"""
|
|
self.vae.enable_slicing()
|
|
|
|
def disable_vae_slicing(self):
|
|
r"""
|
|
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
|
computing decoding in one step.
|
|
"""
|
|
self.vae.disable_slicing()
|
|
|
|
def enable_vae_tiling(self):
|
|
r"""
|
|
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
|
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
|
processing larger images.
|
|
"""
|
|
self.vae.enable_tiling()
|
|
|
|
def disable_vae_tiling(self):
|
|
r"""
|
|
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
|
computing decoding in one step.
|
|
"""
|
|
self.vae.disable_tiling()
|
|
|
|
def prepare_latents(
|
|
self,
|
|
batch_size,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
num_frames,
|
|
dtype,
|
|
device,
|
|
generator,
|
|
latents=None,
|
|
):
|
|
height = height // self.vae_spatial_scale_factor
|
|
width = width // self.vae_spatial_scale_factor
|
|
num_frames = (num_frames - 1) // self.vae_temporal_scale_factor + 1
|
|
|
|
shape = (batch_size, num_channels_latents, num_frames, height, width)
|
|
|
|
if latents is not None:
|
|
return latents.to(device=device, dtype=dtype)
|
|
if isinstance(generator, list) and len(generator) != batch_size:
|
|
raise ValueError(
|
|
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
|
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
|
)
|
|
|
|
latents = randn_tensor(shape, generator=generator, device=device, dtype=torch.float32)
|
|
latents = latents.to(dtype)
|
|
return latents
|
|
|
|
@property
|
|
def guidance_scale(self):
|
|
return self._guidance_scale
|
|
|
|
@property
|
|
def do_classifier_free_guidance(self):
|
|
return self._guidance_scale > 1.0
|
|
|
|
@property
|
|
def num_timesteps(self):
|
|
return self._num_timesteps
|
|
|
|
@property
|
|
def attention_kwargs(self):
|
|
return self._attention_kwargs
|
|
|
|
@property
|
|
def current_timestep(self):
|
|
return self._current_timestep
|
|
|
|
@property
|
|
def interrupt(self):
|
|
return self._interrupt
|
|
|
|
@torch.no_grad()
|
|
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
|
def __call__(
|
|
self,
|
|
prompt: Union[str, List[str]] = None,
|
|
negative_prompt: Optional[Union[str, List[str]]] = None,
|
|
height: Optional[int] = None,
|
|
width: Optional[int] = None,
|
|
num_frames: int = 19,
|
|
num_inference_steps: int = 64,
|
|
timesteps: List[int] = None,
|
|
guidance_scale: float = 4.5,
|
|
num_videos_per_prompt: Optional[int] = 1,
|
|
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
|
latents: Optional[torch.Tensor] = None,
|
|
prompt_embeds: Optional[torch.Tensor] = None,
|
|
prompt_attention_mask: Optional[torch.Tensor] = None,
|
|
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
|
negative_prompt_attention_mask: Optional[torch.Tensor] = None,
|
|
output_type: Optional[str] = "pil",
|
|
return_dict: bool = True,
|
|
attention_kwargs: Optional[Dict[str, Any]] = None,
|
|
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
|
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
|
max_sequence_length: int = 256,
|
|
):
|
|
r"""
|
|
Function invoked when calling the pipeline for generation.
|
|
|
|
Args:
|
|
prompt (`str` or `List[str]`, *optional*):
|
|
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
|
instead.
|
|
height (`int`, *optional*, defaults to `self.default_height`):
|
|
The height in pixels of the generated image. This is set to 480 by default for the best results.
|
|
width (`int`, *optional*, defaults to `self.default_width`):
|
|
The width in pixels of the generated image. This is set to 848 by default for the best results.
|
|
num_frames (`int`, defaults to `19`):
|
|
The number of video frames to generate
|
|
num_inference_steps (`int`, *optional*, defaults to 50):
|
|
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
|
expense of slower inference.
|
|
timesteps (`List[int]`, *optional*):
|
|
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
|
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
|
passed will be used. Must be in descending order.
|
|
guidance_scale (`float`, defaults to `4.5`):
|
|
Guidance scale as defined in [Classifier-Free Diffusion
|
|
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
|
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
|
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
|
the text `prompt`, usually at the expense of lower image quality.
|
|
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
|
The number of videos to generate per prompt.
|
|
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
|
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
|
to make generation deterministic.
|
|
latents (`torch.Tensor`, *optional*):
|
|
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
|
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
|
tensor will ge generated by sampling using the supplied random `generator`.
|
|
prompt_embeds (`torch.Tensor`, *optional*):
|
|
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
|
provided, text embeddings will be generated from `prompt` input argument.
|
|
prompt_attention_mask (`torch.Tensor`, *optional*):
|
|
Pre-generated attention mask for text embeddings.
|
|
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
|
Pre-generated negative text embeddings. For PixArt-Sigma this negative prompt should be "". If not
|
|
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
|
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
|
|
Pre-generated attention mask for negative text embeddings.
|
|
output_type (`str`, *optional*, defaults to `"pil"`):
|
|
The output format of the generate image. Choose between
|
|
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
|
return_dict (`bool`, *optional*, defaults to `True`):
|
|
Whether or not to return a [`~pipelines.mochi.MochiPipelineOutput`] instead of a plain tuple.
|
|
attention_kwargs (`dict`, *optional*):
|
|
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
|
`self.processor` in
|
|
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
|
callback_on_step_end (`Callable`, *optional*):
|
|
A function that calls at the end of each denoising steps during the inference. The function is called
|
|
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
|
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
|
`callback_on_step_end_tensor_inputs`.
|
|
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
|
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
|
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
|
`._callback_tensor_inputs` attribute of your pipeline class.
|
|
max_sequence_length (`int` defaults to `256`):
|
|
Maximum sequence length to use with the `prompt`.
|
|
|
|
Examples:
|
|
|
|
Returns:
|
|
[`~pipelines.mochi.MochiPipelineOutput`] or `tuple`:
|
|
If `return_dict` is `True`, [`~pipelines.mochi.MochiPipelineOutput`] is returned, otherwise a `tuple`
|
|
is returned where the first element is a list with the generated images.
|
|
"""
|
|
|
|
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
|
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
|
|
|
height = height or self.default_height
|
|
width = width or self.default_width
|
|
|
|
# 1. Check inputs. Raise error if not correct
|
|
self.check_inputs(
|
|
prompt=prompt,
|
|
height=height,
|
|
width=width,
|
|
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
prompt_attention_mask=prompt_attention_mask,
|
|
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
|
)
|
|
|
|
self._guidance_scale = guidance_scale
|
|
self._attention_kwargs = attention_kwargs
|
|
self._current_timestep = None
|
|
self._interrupt = False
|
|
|
|
# 2. Define call parameters
|
|
if prompt is not None and isinstance(prompt, str):
|
|
batch_size = 1
|
|
elif prompt is not None and isinstance(prompt, list):
|
|
batch_size = len(prompt)
|
|
else:
|
|
batch_size = prompt_embeds.shape[0]
|
|
|
|
device = self._execution_device
|
|
# 3. Prepare text embeddings
|
|
(
|
|
prompt_embeds,
|
|
prompt_attention_mask,
|
|
negative_prompt_embeds,
|
|
negative_prompt_attention_mask,
|
|
) = self.encode_prompt(
|
|
prompt=prompt,
|
|
negative_prompt=negative_prompt,
|
|
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
|
num_videos_per_prompt=num_videos_per_prompt,
|
|
prompt_embeds=prompt_embeds,
|
|
negative_prompt_embeds=negative_prompt_embeds,
|
|
prompt_attention_mask=prompt_attention_mask,
|
|
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
|
max_sequence_length=max_sequence_length,
|
|
device=device,
|
|
)
|
|
# 4. Prepare latent variables
|
|
num_channels_latents = self.transformer.config.in_channels
|
|
latents = self.prepare_latents(
|
|
batch_size * num_videos_per_prompt,
|
|
num_channels_latents,
|
|
height,
|
|
width,
|
|
num_frames,
|
|
prompt_embeds.dtype,
|
|
device,
|
|
generator,
|
|
latents,
|
|
)
|
|
|
|
if self.do_classifier_free_guidance:
|
|
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
|
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
|
|
|
# 5. Prepare timestep
|
|
# from https://github.com/genmoai/models/blob/075b6e36db58f1242921deff83a1066887b9c9e1/src/mochi_preview/infer.py#L77
|
|
threshold_noise = 0.025
|
|
sigmas = linear_quadratic_schedule(num_inference_steps, threshold_noise)
|
|
sigmas = np.array(sigmas)
|
|
|
|
timesteps, num_inference_steps = retrieve_timesteps(
|
|
self.scheduler,
|
|
num_inference_steps,
|
|
device,
|
|
timesteps,
|
|
sigmas,
|
|
)
|
|
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
|
self._num_timesteps = len(timesteps)
|
|
|
|
# 6. Denoising loop
|
|
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
|
for i, t in enumerate(timesteps):
|
|
if self.interrupt:
|
|
continue
|
|
|
|
# Note: Mochi uses reversed timesteps. To ensure compatibility with methods like FasterCache, we need
|
|
# to make sure we're using the correct non-reversed timestep values.
|
|
self._current_timestep = 1000 - t
|
|
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
|
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
|
timestep = t.expand(latent_model_input.shape[0]).to(latents.dtype)
|
|
|
|
noise_pred = self.transformer(
|
|
hidden_states=latent_model_input,
|
|
encoder_hidden_states=prompt_embeds,
|
|
timestep=timestep,
|
|
encoder_attention_mask=prompt_attention_mask,
|
|
attention_kwargs=attention_kwargs,
|
|
return_dict=False,
|
|
)[0]
|
|
# Mochi CFG + Sampling runs in FP32
|
|
noise_pred = noise_pred.to(torch.float32)
|
|
|
|
if self.do_classifier_free_guidance:
|
|
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
|
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
|
|
|
# compute the previous noisy sample x_t -> x_t-1
|
|
latents_dtype = latents.dtype
|
|
latents = self.scheduler.step(noise_pred, t, latents.to(torch.float32), return_dict=False)[0]
|
|
latents = latents.to(latents_dtype)
|
|
|
|
if latents.dtype != latents_dtype:
|
|
if torch.backends.mps.is_available():
|
|
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
|
latents = latents.to(latents_dtype)
|
|
|
|
if callback_on_step_end is not None:
|
|
callback_kwargs = {}
|
|
for k in callback_on_step_end_tensor_inputs:
|
|
callback_kwargs[k] = locals()[k]
|
|
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
|
|
|
latents = callback_outputs.pop("latents", latents)
|
|
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
|
|
|
# call the callback, if provided
|
|
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
|
progress_bar.update()
|
|
|
|
if XLA_AVAILABLE:
|
|
xm.mark_step()
|
|
|
|
self._current_timestep = None
|
|
|
|
if output_type == "latent":
|
|
video = latents
|
|
else:
|
|
# unscale/denormalize the latents
|
|
# denormalize with the mean and std if available and not None
|
|
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None
|
|
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None
|
|
if has_latents_mean and has_latents_std:
|
|
latents_mean = (
|
|
torch.tensor(self.vae.config.latents_mean).view(1, 12, 1, 1, 1).to(latents.device, latents.dtype)
|
|
)
|
|
latents_std = (
|
|
torch.tensor(self.vae.config.latents_std).view(1, 12, 1, 1, 1).to(latents.device, latents.dtype)
|
|
)
|
|
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean
|
|
else:
|
|
latents = latents / self.vae.config.scaling_factor
|
|
|
|
video = self.vae.decode(latents, return_dict=False)[0]
|
|
video = self.video_processor.postprocess_video(video, output_type=output_type)
|
|
|
|
# Offload all models
|
|
self.maybe_free_model_hooks()
|
|
|
|
if not return_dict:
|
|
return (video,)
|
|
|
|
return MochiPipelineOutput(frames=video)
|