169 lines
5.9 KiB
Python
169 lines
5.9 KiB
Python
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Union
|
|
|
|
from ..base import DiffusersQuantizer
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from ...models.modeling_utils import ModelMixin
|
|
|
|
|
|
from ...utils import (
|
|
get_module_from_name,
|
|
is_accelerate_available,
|
|
is_accelerate_version,
|
|
is_gguf_available,
|
|
is_gguf_version,
|
|
is_torch_available,
|
|
logging,
|
|
)
|
|
|
|
|
|
if is_torch_available() and is_gguf_available():
|
|
import torch
|
|
|
|
from .utils import (
|
|
GGML_QUANT_SIZES,
|
|
GGUFParameter,
|
|
_dequantize_gguf_and_restore_linear,
|
|
_quant_shape_from_byte_shape,
|
|
_replace_with_gguf_linear,
|
|
)
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class GGUFQuantizer(DiffusersQuantizer):
|
|
use_keep_in_fp32_modules = True
|
|
|
|
def __init__(self, quantization_config, **kwargs):
|
|
super().__init__(quantization_config, **kwargs)
|
|
|
|
self.compute_dtype = quantization_config.compute_dtype
|
|
self.pre_quantized = quantization_config.pre_quantized
|
|
self.modules_to_not_convert = quantization_config.modules_to_not_convert
|
|
|
|
if not isinstance(self.modules_to_not_convert, list):
|
|
self.modules_to_not_convert = [self.modules_to_not_convert]
|
|
|
|
def validate_environment(self, *args, **kwargs):
|
|
if not is_accelerate_available() or is_accelerate_version("<", "0.26.0"):
|
|
raise ImportError(
|
|
"Loading GGUF Parameters requires `accelerate` installed in your environment: `pip install 'accelerate>=0.26.0'`"
|
|
)
|
|
if not is_gguf_available() or is_gguf_version("<", "0.10.0"):
|
|
raise ImportError(
|
|
"To load GGUF format files you must have `gguf` installed in your environment: `pip install gguf>=0.10.0`"
|
|
)
|
|
|
|
# Copied from diffusers.quantizers.bitsandbytes.bnb_quantizer.BnB4BitDiffusersQuantizer.adjust_max_memory
|
|
def adjust_max_memory(self, max_memory: Dict[str, Union[int, str]]) -> Dict[str, Union[int, str]]:
|
|
# need more space for buffers that are created during quantization
|
|
max_memory = {key: val * 0.90 for key, val in max_memory.items()}
|
|
return max_memory
|
|
|
|
def adjust_target_dtype(self, target_dtype: "torch.dtype") -> "torch.dtype":
|
|
if target_dtype != torch.uint8:
|
|
logger.info(f"target_dtype {target_dtype} is replaced by `torch.uint8` for GGUF quantization")
|
|
return torch.uint8
|
|
|
|
def update_torch_dtype(self, torch_dtype: "torch.dtype") -> "torch.dtype":
|
|
if torch_dtype is None:
|
|
torch_dtype = self.compute_dtype
|
|
return torch_dtype
|
|
|
|
def check_quantized_param_shape(self, param_name, current_param, loaded_param):
|
|
loaded_param_shape = loaded_param.shape
|
|
current_param_shape = current_param.shape
|
|
quant_type = loaded_param.quant_type
|
|
|
|
block_size, type_size = GGML_QUANT_SIZES[quant_type]
|
|
|
|
inferred_shape = _quant_shape_from_byte_shape(loaded_param_shape, type_size, block_size)
|
|
if inferred_shape != current_param_shape:
|
|
raise ValueError(
|
|
f"{param_name} has an expected quantized shape of: {inferred_shape}, but received shape: {loaded_param_shape}"
|
|
)
|
|
|
|
return True
|
|
|
|
def check_if_quantized_param(
|
|
self,
|
|
model: "ModelMixin",
|
|
param_value: Union["GGUFParameter", "torch.Tensor"],
|
|
param_name: str,
|
|
state_dict: Dict[str, Any],
|
|
**kwargs,
|
|
) -> bool:
|
|
if isinstance(param_value, GGUFParameter):
|
|
return True
|
|
|
|
return False
|
|
|
|
def create_quantized_param(
|
|
self,
|
|
model: "ModelMixin",
|
|
param_value: Union["GGUFParameter", "torch.Tensor"],
|
|
param_name: str,
|
|
target_device: "torch.device",
|
|
state_dict: Optional[Dict[str, Any]] = None,
|
|
unexpected_keys: Optional[List[str]] = None,
|
|
**kwargs,
|
|
):
|
|
module, tensor_name = get_module_from_name(model, param_name)
|
|
if tensor_name not in module._parameters and tensor_name not in module._buffers:
|
|
raise ValueError(f"{module} does not have a parameter or a buffer named {tensor_name}.")
|
|
|
|
if tensor_name in module._parameters:
|
|
module._parameters[tensor_name] = param_value.to(target_device)
|
|
if tensor_name in module._buffers:
|
|
module._buffers[tensor_name] = param_value.to(target_device)
|
|
|
|
def _process_model_before_weight_loading(
|
|
self,
|
|
model: "ModelMixin",
|
|
device_map,
|
|
keep_in_fp32_modules: List[str] = [],
|
|
**kwargs,
|
|
):
|
|
state_dict = kwargs.get("state_dict", None)
|
|
|
|
self.modules_to_not_convert.extend(keep_in_fp32_modules)
|
|
self.modules_to_not_convert = [module for module in self.modules_to_not_convert if module is not None]
|
|
|
|
_replace_with_gguf_linear(
|
|
model, self.compute_dtype, state_dict, modules_to_not_convert=self.modules_to_not_convert
|
|
)
|
|
|
|
def _process_model_after_weight_loading(self, model: "ModelMixin", **kwargs):
|
|
return model
|
|
|
|
@property
|
|
def is_serializable(self):
|
|
return False
|
|
|
|
@property
|
|
def is_trainable(self) -> bool:
|
|
return False
|
|
|
|
@property
|
|
def is_compileable(self) -> bool:
|
|
return True
|
|
|
|
def _dequantize(self, model):
|
|
is_model_on_cpu = model.device.type == "cpu"
|
|
if is_model_on_cpu:
|
|
logger.info(
|
|
"Model was found to be on CPU (could happen as a result of `enable_model_cpu_offload()`). So, moving it to accelerator. After dequantization, will move the model back to CPU again to preserve the previous device."
|
|
)
|
|
device = (
|
|
torch.accelerator.current_accelerator()
|
|
if hasattr(torch, "accelerator")
|
|
else torch.cuda.current_device()
|
|
)
|
|
model.to(device)
|
|
|
|
model = _dequantize_gguf_and_restore_linear(model, self.modules_to_not_convert)
|
|
if is_model_on_cpu:
|
|
model.to("cpu")
|
|
return model
|