team-10/env/Lib/site-packages/huggingface_hub/inference/_providers/nebius.py
2025-08-02 07:34:44 +02:00

83 lines
3.5 KiB
Python

import base64
from typing import Any, Dict, Optional, Union
from huggingface_hub.hf_api import InferenceProviderMapping
from huggingface_hub.inference._common import RequestParameters, _as_dict
from huggingface_hub.inference._providers._common import (
BaseConversationalTask,
BaseTextGenerationTask,
TaskProviderHelper,
filter_none,
)
class NebiusTextGenerationTask(BaseTextGenerationTask):
def __init__(self):
super().__init__(provider="nebius", base_url="https://api.studio.nebius.ai")
def get_response(self, response: Union[bytes, Dict], request_params: Optional[RequestParameters] = None) -> Any:
output = _as_dict(response)["choices"][0]
return {
"generated_text": output["text"],
"details": {
"finish_reason": output.get("finish_reason"),
"seed": output.get("seed"),
},
}
class NebiusConversationalTask(BaseConversationalTask):
def __init__(self):
super().__init__(provider="nebius", base_url="https://api.studio.nebius.ai")
def _prepare_payload_as_dict(
self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping
) -> Optional[Dict]:
payload = super()._prepare_payload_as_dict(inputs, parameters, provider_mapping_info)
response_format = parameters.get("response_format")
if isinstance(response_format, dict) and response_format.get("type") == "json_schema":
json_schema_details = response_format.get("json_schema")
if isinstance(json_schema_details, dict) and "schema" in json_schema_details:
payload["guided_json"] = json_schema_details["schema"] # type: ignore [index]
return payload
class NebiusTextToImageTask(TaskProviderHelper):
def __init__(self):
super().__init__(task="text-to-image", provider="nebius", base_url="https://api.studio.nebius.ai")
def _prepare_route(self, mapped_model: str, api_key: str) -> str:
return "/v1/images/generations"
def _prepare_payload_as_dict(
self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping
) -> Optional[Dict]:
mapped_model = provider_mapping_info.provider_id
parameters = filter_none(parameters)
if "guidance_scale" in parameters:
parameters.pop("guidance_scale")
if parameters.get("response_format") not in ("b64_json", "url"):
parameters["response_format"] = "b64_json"
return {"prompt": inputs, **parameters, "model": mapped_model}
def get_response(self, response: Union[bytes, Dict], request_params: Optional[RequestParameters] = None) -> Any:
response_dict = _as_dict(response)
return base64.b64decode(response_dict["data"][0]["b64_json"])
class NebiusFeatureExtractionTask(TaskProviderHelper):
def __init__(self):
super().__init__(task="feature-extraction", provider="nebius", base_url="https://api.studio.nebius.ai")
def _prepare_route(self, mapped_model: str, api_key: str) -> str:
return "/v1/embeddings"
def _prepare_payload_as_dict(
self, inputs: Any, parameters: Dict, provider_mapping_info: InferenceProviderMapping
) -> Optional[Dict]:
return {"input": inputs, "model": provider_mapping_info.provider_id}
def get_response(self, response: Union[bytes, Dict], request_params: Optional[RequestParameters] = None) -> Any:
embeddings = _as_dict(response)["data"]
return [embedding["embedding"] for embedding in embeddings]