team-10/env/Lib/site-packages/narwhals/_pandas_like/utils.py
2025-08-02 07:34:44 +02:00

676 lines
26 KiB
Python

from __future__ import annotations
import functools
import operator
import re
from typing import TYPE_CHECKING, Any, Callable, Literal, TypeVar
import pandas as pd
from narwhals._compliant import EagerSeriesNamespace
from narwhals._constants import (
MS_PER_SECOND,
NS_PER_MICROSECOND,
NS_PER_MILLISECOND,
NS_PER_SECOND,
SECONDS_PER_DAY,
US_PER_SECOND,
)
from narwhals._utils import (
Implementation,
Version,
_DeferredIterable,
check_columns_exist,
isinstance_or_issubclass,
)
from narwhals.exceptions import ShapeError
if TYPE_CHECKING:
from collections.abc import Iterable, Iterator, Mapping
from types import ModuleType
from pandas._typing import Dtype as PandasDtype
from pandas.core.dtypes.dtypes import BaseMaskedDtype
from typing_extensions import TypeAlias, TypeIs
from narwhals._duration import IntervalUnit
from narwhals._pandas_like.expr import PandasLikeExpr
from narwhals._pandas_like.series import PandasLikeSeries
from narwhals._pandas_like.typing import (
NativeDataFrameT,
NativeNDFrameT,
NativeSeriesT,
)
from narwhals.dtypes import DType
from narwhals.typing import DTypeBackend, IntoDType, TimeUnit, _1DArray
ExprT = TypeVar("ExprT", bound=PandasLikeExpr)
UnitCurrent: TypeAlias = TimeUnit
UnitTarget: TypeAlias = TimeUnit
BinOpBroadcast: TypeAlias = Callable[[Any, int], Any]
IntoRhs: TypeAlias = int
PANDAS_LIKE_IMPLEMENTATION = {
Implementation.PANDAS,
Implementation.CUDF,
Implementation.MODIN,
}
PD_DATETIME_RGX = r"""^
datetime64\[
(?P<time_unit>s|ms|us|ns) # Match time unit: s, ms, us, or ns
(?:, # Begin non-capturing group for optional timezone
\s* # Optional whitespace after comma
(?P<time_zone> # Start named group for timezone
[a-zA-Z\/]+ # Match timezone name, e.g., UTC, America/New_York
(?:[+-]\d{2}:\d{2})? # Optional offset in format +HH:MM or -HH:MM
| # OR
pytz\.FixedOffset\(\d+\) # Match pytz.FixedOffset with integer offset in parentheses
) # End time_zone group
)? # End optional timezone group
\] # Closing bracket for datetime64
$"""
PATTERN_PD_DATETIME = re.compile(PD_DATETIME_RGX, re.VERBOSE)
PA_DATETIME_RGX = r"""^
timestamp\[
(?P<time_unit>s|ms|us|ns) # Match time unit: s, ms, us, or ns
(?:, # Begin non-capturing group for optional timezone
\s?tz= # Match "tz=" prefix
(?P<time_zone> # Start named group for timezone
[a-zA-Z\/]* # Match timezone name (e.g., UTC, America/New_York)
(?: # Begin optional non-capturing group for offset
[+-]\d{2}:\d{2} # Match offset in format +HH:MM or -HH:MM
)? # End optional offset group
) # End time_zone group
)? # End optional timezone group
\] # Closing bracket for timestamp
\[pyarrow\] # Literal string "[pyarrow]"
$"""
PATTERN_PA_DATETIME = re.compile(PA_DATETIME_RGX, re.VERBOSE)
PD_DURATION_RGX = r"""^
timedelta64\[
(?P<time_unit>s|ms|us|ns) # Match time unit: s, ms, us, or ns
\] # Closing bracket for timedelta64
$"""
PATTERN_PD_DURATION = re.compile(PD_DURATION_RGX, re.VERBOSE)
PA_DURATION_RGX = r"""^
duration\[
(?P<time_unit>s|ms|us|ns) # Match time unit: s, ms, us, or ns
\] # Closing bracket for duration
\[pyarrow\] # Literal string "[pyarrow]"
$"""
PATTERN_PA_DURATION = re.compile(PA_DURATION_RGX, re.VERBOSE)
NativeIntervalUnit: TypeAlias = Literal[
"year",
"quarter",
"month",
"week",
"day",
"hour",
"minute",
"second",
"millisecond",
"microsecond",
"nanosecond",
]
ALIAS_DICT = {"d": "D", "m": "min"}
UNITS_DICT: Mapping[IntervalUnit, NativeIntervalUnit] = {
"y": "year",
"q": "quarter",
"mo": "month",
"d": "day",
"h": "hour",
"m": "minute",
"s": "second",
"ms": "millisecond",
"us": "microsecond",
"ns": "nanosecond",
}
def align_and_extract_native(
lhs: PandasLikeSeries, rhs: PandasLikeSeries | object
) -> tuple[pd.Series[Any] | object, pd.Series[Any] | object]:
"""Validate RHS of binary operation.
If the comparison isn't supported, return `NotImplemented` so that the
"right-hand-side" operation (e.g. `__radd__`) can be tried.
"""
from narwhals._pandas_like.series import PandasLikeSeries
lhs_index = lhs.native.index
if lhs._broadcast and isinstance(rhs, PandasLikeSeries) and not rhs._broadcast:
return lhs.native.iloc[0], rhs.native
if isinstance(rhs, PandasLikeSeries):
if rhs._broadcast:
return (lhs.native, rhs.native.iloc[0])
if rhs.native.index is not lhs_index:
return (
lhs.native,
set_index(rhs.native, lhs_index, implementation=rhs._implementation),
)
return (lhs.native, rhs.native)
if isinstance(rhs, list):
msg = "Expected Series or scalar, got list."
raise TypeError(msg)
# `rhs` must be scalar, so just leave it as-is
return lhs.native, rhs
def set_index(
obj: NativeNDFrameT, index: Any, *, implementation: Implementation
) -> NativeNDFrameT:
"""Wrapper around pandas' set_axis to set object index.
We can set `copy` / `inplace` based on implementation/version.
"""
if isinstance(index, implementation.to_native_namespace().Index) and (
expected_len := len(index)
) != (actual_len := len(obj)):
msg = f"Expected object of length {expected_len}, got length: {actual_len}"
raise ShapeError(msg)
if implementation is Implementation.CUDF:
obj = obj.copy(deep=False)
obj.index = index
return obj
if implementation is Implementation.PANDAS and (
(1, 5) <= implementation._backend_version() < (3,)
): # pragma: no cover
return obj.set_axis(index, axis=0, copy=False)
else: # pragma: no cover
return obj.set_axis(index, axis=0)
def rename(
obj: NativeNDFrameT, *args: Any, implementation: Implementation, **kwargs: Any
) -> NativeNDFrameT:
"""Wrapper around pandas' rename so that we can set `copy` based on implementation/version."""
if implementation is Implementation.PANDAS and (
implementation._backend_version() >= (3,)
): # pragma: no cover
return obj.rename(*args, **kwargs, inplace=False)
return obj.rename(*args, **kwargs, copy=False, inplace=False)
@functools.lru_cache(maxsize=16)
def non_object_native_to_narwhals_dtype(native_dtype: Any, version: Version) -> DType: # noqa: C901, PLR0912
dtype = str(native_dtype)
dtypes = version.dtypes
if dtype in {"int64", "Int64", "Int64[pyarrow]", "int64[pyarrow]"}:
return dtypes.Int64()
if dtype in {"int32", "Int32", "Int32[pyarrow]", "int32[pyarrow]"}:
return dtypes.Int32()
if dtype in {"int16", "Int16", "Int16[pyarrow]", "int16[pyarrow]"}:
return dtypes.Int16()
if dtype in {"int8", "Int8", "Int8[pyarrow]", "int8[pyarrow]"}:
return dtypes.Int8()
if dtype in {"uint64", "UInt64", "UInt64[pyarrow]", "uint64[pyarrow]"}:
return dtypes.UInt64()
if dtype in {"uint32", "UInt32", "UInt32[pyarrow]", "uint32[pyarrow]"}:
return dtypes.UInt32()
if dtype in {"uint16", "UInt16", "UInt16[pyarrow]", "uint16[pyarrow]"}:
return dtypes.UInt16()
if dtype in {"uint8", "UInt8", "UInt8[pyarrow]", "uint8[pyarrow]"}:
return dtypes.UInt8()
if dtype in {
"float64",
"Float64",
"Float64[pyarrow]",
"float64[pyarrow]",
"double[pyarrow]",
}:
return dtypes.Float64()
if dtype in {
"float32",
"Float32",
"Float32[pyarrow]",
"float32[pyarrow]",
"float[pyarrow]",
}:
return dtypes.Float32()
if dtype in {
# "there is no problem which can't be solved by adding an extra string type" pandas
"string",
"string[python]",
"string[pyarrow]",
"string[pyarrow_numpy]",
"large_string[pyarrow]",
"str",
}:
return dtypes.String()
if dtype in {"bool", "boolean", "boolean[pyarrow]", "bool[pyarrow]"}:
return dtypes.Boolean()
if dtype.startswith("dictionary<"):
return dtypes.Categorical()
if dtype == "category":
return native_categorical_to_narwhals_dtype(native_dtype, version)
if (match_ := PATTERN_PD_DATETIME.match(dtype)) or (
match_ := PATTERN_PA_DATETIME.match(dtype)
):
dt_time_unit: TimeUnit = match_.group("time_unit") # type: ignore[assignment]
dt_time_zone: str | None = match_.group("time_zone")
return dtypes.Datetime(dt_time_unit, dt_time_zone)
if (match_ := PATTERN_PD_DURATION.match(dtype)) or (
match_ := PATTERN_PA_DURATION.match(dtype)
):
du_time_unit: TimeUnit = match_.group("time_unit") # type: ignore[assignment]
return dtypes.Duration(du_time_unit)
if dtype == "date32[day][pyarrow]":
return dtypes.Date()
if dtype.startswith("decimal") and dtype.endswith("[pyarrow]"):
return dtypes.Decimal()
if dtype.startswith("time") and dtype.endswith("[pyarrow]"):
return dtypes.Time()
if dtype.startswith("binary") and dtype.endswith("[pyarrow]"):
return dtypes.Binary()
return dtypes.Unknown() # pragma: no cover
def object_native_to_narwhals_dtype(
series: PandasLikeSeries, version: Version, implementation: Implementation
) -> DType:
dtypes = version.dtypes
if implementation is Implementation.CUDF:
# Per conversations with their maintainers, they don't support arbitrary
# objects, so we can just return String.
return dtypes.String()
# Arbitrary limit of 100 elements to use to sniff dtype.
inferred_dtype = pd.api.types.infer_dtype(series.head(100), skipna=True)
if inferred_dtype == "string":
return dtypes.String()
if inferred_dtype == "empty" and version is not Version.V1:
# Default to String for empty Series.
return dtypes.String()
elif inferred_dtype == "empty":
# But preserve returning Object in V1.
return dtypes.Object()
return dtypes.Object()
def native_categorical_to_narwhals_dtype(
native_dtype: pd.CategoricalDtype,
version: Version,
implementation: Literal[Implementation.CUDF] | None = None,
) -> DType:
dtypes = version.dtypes
if version is Version.V1:
return dtypes.Categorical()
if native_dtype.ordered:
into_iter = (
_cudf_categorical_to_list(native_dtype)
if implementation is Implementation.CUDF
else native_dtype.categories.to_list
)
return dtypes.Enum(_DeferredIterable(into_iter))
return dtypes.Categorical()
def _cudf_categorical_to_list(
native_dtype: Any,
) -> Callable[[], list[Any]]: # pragma: no cover
# NOTE: https://docs.rapids.ai/api/cudf/stable/user_guide/api_docs/api/cudf.core.dtypes.categoricaldtype/#cudf.core.dtypes.CategoricalDtype
def fn() -> list[Any]:
return native_dtype.categories.to_arrow().to_pylist()
return fn
def native_to_narwhals_dtype(
native_dtype: Any, version: Version, implementation: Implementation
) -> DType:
str_dtype = str(native_dtype)
if str_dtype.startswith(("large_list", "list", "struct", "fixed_size_list")):
from narwhals._arrow.utils import (
native_to_narwhals_dtype as arrow_native_to_narwhals_dtype,
)
if hasattr(native_dtype, "to_arrow"): # pragma: no cover
# cudf, cudf.pandas
return arrow_native_to_narwhals_dtype(native_dtype.to_arrow(), version)
return arrow_native_to_narwhals_dtype(native_dtype.pyarrow_dtype, version)
if str_dtype == "category" and implementation.is_cudf():
# https://github.com/rapidsai/cudf/issues/18536
# https://github.com/rapidsai/cudf/issues/14027
return native_categorical_to_narwhals_dtype(
native_dtype, version, Implementation.CUDF
)
if str_dtype != "object":
return non_object_native_to_narwhals_dtype(native_dtype, version)
elif implementation is Implementation.DASK:
# Per conversations with their maintainers, they don't support arbitrary
# objects, so we can just return String.
return version.dtypes.String()
msg = (
"Unreachable code, object dtype should be handled separately" # pragma: no cover
)
raise AssertionError(msg)
if Implementation.PANDAS._backend_version() >= (1, 2):
def is_dtype_numpy_nullable(dtype: Any) -> TypeIs[BaseMaskedDtype]:
"""Return `True` if `dtype` is `"numpy_nullable"`."""
# NOTE: We need a sentinel as the positive case is `BaseMaskedDtype.base = None`
# See https://github.com/narwhals-dev/narwhals/pull/2740#discussion_r2171667055
sentinel = object()
return (
isinstance(dtype, pd.api.extensions.ExtensionDtype)
and getattr(dtype, "base", sentinel) is None
)
else: # pragma: no cover
def is_dtype_numpy_nullable(dtype: Any) -> TypeIs[BaseMaskedDtype]:
# NOTE: `base` attribute was added between 1.1-1.2
# Checking by isinstance requires using an import path that is no longer valid
# `1.1`: https://github.com/pandas-dev/pandas/blob/b5958ee1999e9aead1938c0bba2b674378807b3d/pandas/core/arrays/masked.py#L37
# `1.2`: https://github.com/pandas-dev/pandas/blob/7c48ff4409c622c582c56a5702373f726de08e96/pandas/core/arrays/masked.py#L41
# `1.5`: https://github.com/pandas-dev/pandas/blob/35b0d1dcadf9d60722c055ee37442dc76a29e64c/pandas/core/dtypes/dtypes.py#L1609
if isinstance(dtype, pd.api.extensions.ExtensionDtype):
from pandas.core.arrays.masked import ( # type: ignore[attr-defined]
BaseMaskedDtype as OldBaseMaskedDtype, # pyright: ignore[reportAttributeAccessIssue]
)
return isinstance(dtype, OldBaseMaskedDtype)
return False
def get_dtype_backend(dtype: Any, implementation: Implementation) -> DTypeBackend:
"""Get dtype backend for pandas type.
Matches pandas' `dtype_backend` argument in `convert_dtypes`.
"""
if implementation is Implementation.CUDF:
return None
if is_dtype_pyarrow(dtype):
return "pyarrow"
return "numpy_nullable" if is_dtype_numpy_nullable(dtype) else None
# NOTE: Use this to avoid annotating inline
def iter_dtype_backends(
dtypes: Iterable[Any], implementation: Implementation
) -> Iterator[DTypeBackend]:
"""Yield a `DTypeBackend` per-dtype.
Matches pandas' `dtype_backend` argument in `convert_dtypes`.
"""
return (get_dtype_backend(dtype, implementation) for dtype in dtypes)
@functools.lru_cache(maxsize=16)
def is_dtype_pyarrow(dtype: Any) -> TypeIs[pd.ArrowDtype]:
return hasattr(pd, "ArrowDtype") and isinstance(dtype, pd.ArrowDtype)
def narwhals_to_native_dtype( # noqa: C901, PLR0912, PLR0915
dtype: IntoDType,
dtype_backend: DTypeBackend,
implementation: Implementation,
version: Version,
) -> str | PandasDtype:
if dtype_backend is not None and dtype_backend not in {"pyarrow", "numpy_nullable"}:
msg = f"Expected one of {{None, 'pyarrow', 'numpy_nullable'}}, got: '{dtype_backend}'"
raise ValueError(msg)
dtypes = version.dtypes
if isinstance_or_issubclass(dtype, dtypes.Decimal):
msg = "Casting to Decimal is not supported yet."
raise NotImplementedError(msg)
if isinstance_or_issubclass(dtype, dtypes.Float64):
if dtype_backend == "pyarrow":
return "Float64[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "Float64"
return "float64"
if isinstance_or_issubclass(dtype, dtypes.Float32):
if dtype_backend == "pyarrow":
return "Float32[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "Float32"
return "float32"
if isinstance_or_issubclass(dtype, dtypes.Int64):
if dtype_backend == "pyarrow":
return "Int64[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "Int64"
return "int64"
if isinstance_or_issubclass(dtype, dtypes.Int32):
if dtype_backend == "pyarrow":
return "Int32[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "Int32"
return "int32"
if isinstance_or_issubclass(dtype, dtypes.Int16):
if dtype_backend == "pyarrow":
return "Int16[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "Int16"
return "int16"
if isinstance_or_issubclass(dtype, dtypes.Int8):
if dtype_backend == "pyarrow":
return "Int8[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "Int8"
return "int8"
if isinstance_or_issubclass(dtype, dtypes.UInt64):
if dtype_backend == "pyarrow":
return "UInt64[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "UInt64"
return "uint64"
if isinstance_or_issubclass(dtype, dtypes.UInt32):
if dtype_backend == "pyarrow":
return "UInt32[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "UInt32"
return "uint32"
if isinstance_or_issubclass(dtype, dtypes.UInt16):
if dtype_backend == "pyarrow":
return "UInt16[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "UInt16"
return "uint16"
if isinstance_or_issubclass(dtype, dtypes.UInt8):
if dtype_backend == "pyarrow":
return "UInt8[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "UInt8"
return "uint8"
if isinstance_or_issubclass(dtype, dtypes.String):
if dtype_backend == "pyarrow":
return "string[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "string"
return str
if isinstance_or_issubclass(dtype, dtypes.Boolean):
if dtype_backend == "pyarrow":
return "boolean[pyarrow]"
elif dtype_backend == "numpy_nullable":
return "boolean"
return "bool"
if isinstance_or_issubclass(dtype, dtypes.Categorical):
# TODO(Unassigned): is there no pyarrow-backed categorical?
# or at least, convert_dtypes(dtype_backend='pyarrow') doesn't
# convert to it?
return "category"
backend_version = implementation._backend_version()
if isinstance_or_issubclass(dtype, dtypes.Datetime):
# Pandas does not support "ms" or "us" time units before version 2.0
if implementation is Implementation.PANDAS and backend_version < (
2,
): # pragma: no cover
dt_time_unit = "ns"
else:
dt_time_unit = dtype.time_unit
if dtype_backend == "pyarrow":
tz_part = f", tz={tz}" if (tz := dtype.time_zone) else ""
return f"timestamp[{dt_time_unit}{tz_part}][pyarrow]"
else:
tz_part = f", {tz}" if (tz := dtype.time_zone) else ""
return f"datetime64[{dt_time_unit}{tz_part}]"
if isinstance_or_issubclass(dtype, dtypes.Duration):
if implementation is Implementation.PANDAS and backend_version < (
2,
): # pragma: no cover
du_time_unit = "ns"
else:
du_time_unit = dtype.time_unit
return (
f"duration[{du_time_unit}][pyarrow]"
if dtype_backend == "pyarrow"
else f"timedelta64[{du_time_unit}]"
)
if isinstance_or_issubclass(dtype, dtypes.Date):
try:
import pyarrow as pa # ignore-banned-import
except ModuleNotFoundError: # pragma: no cover
msg = "'pyarrow>=13.0.0' is required for `Date` dtype."
return "date32[pyarrow]"
if isinstance_or_issubclass(dtype, dtypes.Enum):
if version is Version.V1:
msg = "Converting to Enum is not supported in narwhals.stable.v1"
raise NotImplementedError(msg)
if isinstance(dtype, dtypes.Enum):
ns = implementation.to_native_namespace()
return ns.CategoricalDtype(dtype.categories, ordered=True)
msg = "Can not cast / initialize Enum without categories present"
raise ValueError(msg)
if isinstance_or_issubclass(
dtype, (dtypes.Struct, dtypes.Array, dtypes.List, dtypes.Time, dtypes.Binary)
):
if implementation is Implementation.PANDAS and backend_version >= (2, 2):
try:
import pandas as pd
import pyarrow as pa # ignore-banned-import # noqa: F401
except ImportError as exc: # pragma: no cover
msg = f"Unable to convert to {dtype} to to the following exception: {exc.msg}"
raise ImportError(msg) from exc
from narwhals._arrow.utils import (
narwhals_to_native_dtype as arrow_narwhals_to_native_dtype,
)
return pd.ArrowDtype(arrow_narwhals_to_native_dtype(dtype, version=version))
else: # pragma: no cover
msg = (
f"Converting to {dtype} dtype is not supported for implementation "
f"{implementation} and version {version}."
)
raise NotImplementedError(msg)
msg = f"Unknown dtype: {dtype}" # pragma: no cover
raise AssertionError(msg)
def int_dtype_mapper(dtype: Any) -> str:
if "pyarrow" in str(dtype):
return "Int64[pyarrow]"
if str(dtype).lower() != str(dtype): # pragma: no cover
return "Int64"
return "int64"
_TIMESTAMP_DATETIME_OP_FACTOR: Mapping[
tuple[UnitCurrent, UnitTarget], tuple[BinOpBroadcast, IntoRhs]
] = {
("ns", "us"): (operator.floordiv, 1_000),
("ns", "ms"): (operator.floordiv, 1_000_000),
("us", "ns"): (operator.mul, NS_PER_MICROSECOND),
("us", "ms"): (operator.floordiv, 1_000),
("ms", "ns"): (operator.mul, NS_PER_MILLISECOND),
("ms", "us"): (operator.mul, 1_000),
("s", "ns"): (operator.mul, NS_PER_SECOND),
("s", "us"): (operator.mul, US_PER_SECOND),
("s", "ms"): (operator.mul, MS_PER_SECOND),
}
def calculate_timestamp_datetime(
s: NativeSeriesT, current: TimeUnit, time_unit: TimeUnit
) -> NativeSeriesT:
if current == time_unit:
return s
elif item := _TIMESTAMP_DATETIME_OP_FACTOR.get((current, time_unit)):
fn, factor = item
return fn(s, factor)
else: # pragma: no cover
msg = (
f"unexpected time unit {current}, please report an issue at "
"https://github.com/narwhals-dev/narwhals"
)
raise AssertionError(msg)
_TIMESTAMP_DATE_FACTOR: Mapping[TimeUnit, int] = {
"ns": NS_PER_SECOND,
"us": US_PER_SECOND,
"ms": MS_PER_SECOND,
"s": 1,
}
def calculate_timestamp_date(s: NativeSeriesT, time_unit: TimeUnit) -> NativeSeriesT:
return s * SECONDS_PER_DAY * _TIMESTAMP_DATE_FACTOR[time_unit]
def select_columns_by_name(
df: NativeDataFrameT,
column_names: list[str] | _1DArray, # NOTE: Cannot be a tuple!
implementation: Implementation,
) -> NativeDataFrameT | Any:
"""Select columns by name.
Prefer this over `df.loc[:, column_names]` as it's
generally more performant.
"""
if len(column_names) == df.shape[1] and (df.columns == column_names).all():
return df
if (df.columns.dtype.kind == "b") or (
implementation is Implementation.PANDAS
and implementation._backend_version() < (1, 5)
):
# See https://github.com/narwhals-dev/narwhals/issues/1349#issuecomment-2470118122
# for why we need this
if error := check_columns_exist(column_names, available=df.columns.tolist()):
raise error
return df.loc[:, column_names]
try:
return df[column_names]
except KeyError as e:
if error := check_columns_exist(column_names, available=df.columns.tolist()):
raise error from e
raise
def is_non_nullable_boolean(s: PandasLikeSeries) -> bool:
# cuDF booleans are nullable but the native dtype is still 'bool'.
return (
s._implementation
in {Implementation.PANDAS, Implementation.MODIN, Implementation.DASK}
and s.native.dtype == "bool"
)
def import_array_module(implementation: Implementation, /) -> ModuleType:
"""Returns numpy or cupy module depending on the given implementation."""
if implementation in {Implementation.PANDAS, Implementation.MODIN}:
import numpy as np
return np
elif implementation is Implementation.CUDF:
import cupy as cp # ignore-banned-import # cuDF dependency.
return cp
else: # pragma: no cover
msg = f"Expected pandas/modin/cudf, got: {implementation}"
raise AssertionError(msg)
class PandasLikeSeriesNamespace(EagerSeriesNamespace["PandasLikeSeries", Any]): ...