196 lines
6.2 KiB
Python
196 lines
6.2 KiB
Python
from collections.abc import Sequence
|
|
from typing import Any, ClassVar, Final, Generic, Self, SupportsIndex, final, overload
|
|
from typing import Literal as L
|
|
|
|
from _typeshed import Incomplete
|
|
from typing_extensions import TypeVar, deprecated
|
|
|
|
import numpy as np
|
|
from numpy._core.multiarray import ravel_multi_index, unravel_index
|
|
from numpy._typing import (
|
|
ArrayLike,
|
|
NDArray,
|
|
_AnyShape,
|
|
_FiniteNestedSequence,
|
|
_NestedSequence,
|
|
_SupportsArray,
|
|
_SupportsDType,
|
|
)
|
|
|
|
__all__ = [ # noqa: RUF022
|
|
"ravel_multi_index",
|
|
"unravel_index",
|
|
"mgrid",
|
|
"ogrid",
|
|
"r_",
|
|
"c_",
|
|
"s_",
|
|
"index_exp",
|
|
"ix_",
|
|
"ndenumerate",
|
|
"ndindex",
|
|
"fill_diagonal",
|
|
"diag_indices",
|
|
"diag_indices_from",
|
|
]
|
|
|
|
###
|
|
|
|
_T = TypeVar("_T")
|
|
_TupleT = TypeVar("_TupleT", bound=tuple[Any, ...])
|
|
_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any])
|
|
_DTypeT = TypeVar("_DTypeT", bound=np.dtype)
|
|
_ScalarT = TypeVar("_ScalarT", bound=np.generic)
|
|
_ScalarT_co = TypeVar("_ScalarT_co", bound=np.generic, covariant=True)
|
|
_BoolT_co = TypeVar("_BoolT_co", bound=bool, default=bool, covariant=True)
|
|
|
|
_AxisT_co = TypeVar("_AxisT_co", bound=int, default=L[0], covariant=True)
|
|
_MatrixT_co = TypeVar("_MatrixT_co", bound=bool, default=L[False], covariant=True)
|
|
_NDMinT_co = TypeVar("_NDMinT_co", bound=int, default=L[1], covariant=True)
|
|
_Trans1DT_co = TypeVar("_Trans1DT_co", bound=int, default=L[-1], covariant=True)
|
|
|
|
###
|
|
|
|
class ndenumerate(Generic[_ScalarT_co]):
|
|
@overload
|
|
def __new__(cls, arr: _FiniteNestedSequence[_SupportsArray[np.dtype[_ScalarT]]]) -> ndenumerate[_ScalarT]: ...
|
|
@overload
|
|
def __new__(cls, arr: str | _NestedSequence[str]) -> ndenumerate[np.str_]: ...
|
|
@overload
|
|
def __new__(cls, arr: bytes | _NestedSequence[bytes]) -> ndenumerate[np.bytes_]: ...
|
|
@overload
|
|
def __new__(cls, arr: bool | _NestedSequence[bool]) -> ndenumerate[np.bool]: ...
|
|
@overload
|
|
def __new__(cls, arr: int | _NestedSequence[int]) -> ndenumerate[np.intp]: ...
|
|
@overload
|
|
def __new__(cls, arr: float | _NestedSequence[float]) -> ndenumerate[np.float64]: ...
|
|
@overload
|
|
def __new__(cls, arr: complex | _NestedSequence[complex]) -> ndenumerate[np.complex128]: ...
|
|
@overload
|
|
def __new__(cls, arr: object) -> ndenumerate[Any]: ...
|
|
|
|
# The first overload is a (semi-)workaround for a mypy bug (tested with v1.10 and v1.11)
|
|
@overload
|
|
def __next__(
|
|
self: ndenumerate[np.bool | np.number | np.flexible | np.datetime64 | np.timedelta64],
|
|
/,
|
|
) -> tuple[_AnyShape, _ScalarT_co]: ...
|
|
@overload
|
|
def __next__(self: ndenumerate[np.object_], /) -> tuple[_AnyShape, Incomplete]: ...
|
|
@overload
|
|
def __next__(self, /) -> tuple[_AnyShape, _ScalarT_co]: ...
|
|
|
|
#
|
|
def __iter__(self) -> Self: ...
|
|
|
|
class ndindex:
|
|
@overload
|
|
def __init__(self, shape: tuple[SupportsIndex, ...], /) -> None: ...
|
|
@overload
|
|
def __init__(self, /, *shape: SupportsIndex) -> None: ...
|
|
|
|
#
|
|
def __iter__(self) -> Self: ...
|
|
def __next__(self) -> _AnyShape: ...
|
|
|
|
#
|
|
@deprecated("Deprecated since 1.20.0.")
|
|
def ndincr(self, /) -> None: ...
|
|
|
|
class nd_grid(Generic[_BoolT_co]):
|
|
sparse: _BoolT_co
|
|
def __init__(self, sparse: _BoolT_co = ...) -> None: ...
|
|
@overload
|
|
def __getitem__(self: nd_grid[L[False]], key: slice | Sequence[slice]) -> NDArray[Incomplete]: ...
|
|
@overload
|
|
def __getitem__(self: nd_grid[L[True]], key: slice | Sequence[slice]) -> tuple[NDArray[Incomplete], ...]: ...
|
|
|
|
@final
|
|
class MGridClass(nd_grid[L[False]]):
|
|
def __init__(self) -> None: ...
|
|
|
|
@final
|
|
class OGridClass(nd_grid[L[True]]):
|
|
def __init__(self) -> None: ...
|
|
|
|
class AxisConcatenator(Generic[_AxisT_co, _MatrixT_co, _NDMinT_co, _Trans1DT_co]):
|
|
__slots__ = "axis", "matrix", "ndmin", "trans1d"
|
|
|
|
makemat: ClassVar[type[np.matrix[tuple[int, int], np.dtype]]]
|
|
|
|
axis: _AxisT_co
|
|
matrix: _MatrixT_co
|
|
ndmin: _NDMinT_co
|
|
trans1d: _Trans1DT_co
|
|
|
|
#
|
|
def __init__(
|
|
self,
|
|
/,
|
|
axis: _AxisT_co = ...,
|
|
matrix: _MatrixT_co = ...,
|
|
ndmin: _NDMinT_co = ...,
|
|
trans1d: _Trans1DT_co = ...,
|
|
) -> None: ...
|
|
|
|
# TODO(jorenham): annotate this
|
|
def __getitem__(self, key: Incomplete, /) -> Incomplete: ...
|
|
def __len__(self, /) -> L[0]: ...
|
|
|
|
#
|
|
@staticmethod
|
|
@overload
|
|
def concatenate(*a: ArrayLike, axis: SupportsIndex | None = 0, out: _ArrayT) -> _ArrayT: ...
|
|
@staticmethod
|
|
@overload
|
|
def concatenate(*a: ArrayLike, axis: SupportsIndex | None = 0, out: None = None) -> NDArray[Incomplete]: ...
|
|
|
|
@final
|
|
class RClass(AxisConcatenator[L[0], L[False], L[1], L[-1]]):
|
|
def __init__(self, /) -> None: ...
|
|
|
|
@final
|
|
class CClass(AxisConcatenator[L[-1], L[False], L[2], L[0]]):
|
|
def __init__(self, /) -> None: ...
|
|
|
|
class IndexExpression(Generic[_BoolT_co]):
|
|
maketuple: _BoolT_co
|
|
def __init__(self, maketuple: _BoolT_co) -> None: ...
|
|
@overload
|
|
def __getitem__(self, item: _TupleT) -> _TupleT: ...
|
|
@overload
|
|
def __getitem__(self: IndexExpression[L[True]], item: _T) -> tuple[_T]: ...
|
|
@overload
|
|
def __getitem__(self: IndexExpression[L[False]], item: _T) -> _T: ...
|
|
|
|
@overload
|
|
def ix_(*args: _FiniteNestedSequence[_SupportsDType[_DTypeT]]) -> tuple[np.ndarray[_AnyShape, _DTypeT], ...]: ...
|
|
@overload
|
|
def ix_(*args: str | _NestedSequence[str]) -> tuple[NDArray[np.str_], ...]: ...
|
|
@overload
|
|
def ix_(*args: bytes | _NestedSequence[bytes]) -> tuple[NDArray[np.bytes_], ...]: ...
|
|
@overload
|
|
def ix_(*args: bool | _NestedSequence[bool]) -> tuple[NDArray[np.bool], ...]: ...
|
|
@overload
|
|
def ix_(*args: int | _NestedSequence[int]) -> tuple[NDArray[np.intp], ...]: ...
|
|
@overload
|
|
def ix_(*args: float | _NestedSequence[float]) -> tuple[NDArray[np.float64], ...]: ...
|
|
@overload
|
|
def ix_(*args: complex | _NestedSequence[complex]) -> tuple[NDArray[np.complex128], ...]: ...
|
|
|
|
#
|
|
def fill_diagonal(a: NDArray[Any], val: object, wrap: bool = ...) -> None: ...
|
|
|
|
#
|
|
def diag_indices(n: int, ndim: int = ...) -> tuple[NDArray[np.intp], ...]: ...
|
|
def diag_indices_from(arr: ArrayLike) -> tuple[NDArray[np.intp], ...]: ...
|
|
|
|
#
|
|
mgrid: Final[MGridClass] = ...
|
|
ogrid: Final[OGridClass] = ...
|
|
|
|
r_: Final[RClass] = ...
|
|
c_: Final[CClass] = ...
|
|
|
|
index_exp: Final[IndexExpression[L[True]]] = ...
|
|
s_: Final[IndexExpression[L[False]]] = ...
|