482 lines
11 KiB
Python
482 lines
11 KiB
Python
from collections.abc import Iterable
|
|
from typing import (
|
|
Any,
|
|
NamedTuple,
|
|
Never,
|
|
SupportsIndex,
|
|
SupportsInt,
|
|
TypeAlias,
|
|
TypeVar,
|
|
overload,
|
|
)
|
|
from typing import Literal as L
|
|
|
|
import numpy as np
|
|
from numpy import (
|
|
complex128,
|
|
complexfloating,
|
|
float64,
|
|
# other
|
|
floating,
|
|
int32,
|
|
object_,
|
|
signedinteger,
|
|
timedelta64,
|
|
unsignedinteger,
|
|
# re-exports
|
|
vecdot,
|
|
)
|
|
from numpy._core.fromnumeric import matrix_transpose
|
|
from numpy._core.numeric import tensordot
|
|
from numpy._typing import (
|
|
ArrayLike,
|
|
DTypeLike,
|
|
NDArray,
|
|
_ArrayLike,
|
|
_ArrayLikeBool_co,
|
|
_ArrayLikeComplex_co,
|
|
_ArrayLikeFloat_co,
|
|
_ArrayLikeInt_co,
|
|
_ArrayLikeObject_co,
|
|
_ArrayLikeTD64_co,
|
|
_ArrayLikeUInt_co,
|
|
)
|
|
from numpy.linalg import LinAlgError
|
|
|
|
__all__ = [
|
|
"matrix_power",
|
|
"solve",
|
|
"tensorsolve",
|
|
"tensorinv",
|
|
"inv",
|
|
"cholesky",
|
|
"eigvals",
|
|
"eigvalsh",
|
|
"pinv",
|
|
"slogdet",
|
|
"det",
|
|
"svd",
|
|
"svdvals",
|
|
"eig",
|
|
"eigh",
|
|
"lstsq",
|
|
"norm",
|
|
"qr",
|
|
"cond",
|
|
"matrix_rank",
|
|
"LinAlgError",
|
|
"multi_dot",
|
|
"trace",
|
|
"diagonal",
|
|
"cross",
|
|
"outer",
|
|
"tensordot",
|
|
"matmul",
|
|
"matrix_transpose",
|
|
"matrix_norm",
|
|
"vector_norm",
|
|
"vecdot",
|
|
]
|
|
|
|
_ArrayT = TypeVar("_ArrayT", bound=NDArray[Any])
|
|
|
|
_ModeKind: TypeAlias = L["reduced", "complete", "r", "raw"]
|
|
|
|
###
|
|
|
|
fortran_int = np.intc
|
|
|
|
class EigResult(NamedTuple):
|
|
eigenvalues: NDArray[Any]
|
|
eigenvectors: NDArray[Any]
|
|
|
|
class EighResult(NamedTuple):
|
|
eigenvalues: NDArray[Any]
|
|
eigenvectors: NDArray[Any]
|
|
|
|
class QRResult(NamedTuple):
|
|
Q: NDArray[Any]
|
|
R: NDArray[Any]
|
|
|
|
class SlogdetResult(NamedTuple):
|
|
# TODO: `sign` and `logabsdet` are scalars for input 2D arrays and
|
|
# a `(x.ndim - 2)`` dimensionl arrays otherwise
|
|
sign: Any
|
|
logabsdet: Any
|
|
|
|
class SVDResult(NamedTuple):
|
|
U: NDArray[Any]
|
|
S: NDArray[Any]
|
|
Vh: NDArray[Any]
|
|
|
|
@overload
|
|
def tensorsolve(
|
|
a: _ArrayLikeInt_co,
|
|
b: _ArrayLikeInt_co,
|
|
axes: Iterable[int] | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def tensorsolve(
|
|
a: _ArrayLikeFloat_co,
|
|
b: _ArrayLikeFloat_co,
|
|
axes: Iterable[int] | None = ...,
|
|
) -> NDArray[floating]: ...
|
|
@overload
|
|
def tensorsolve(
|
|
a: _ArrayLikeComplex_co,
|
|
b: _ArrayLikeComplex_co,
|
|
axes: Iterable[int] | None = ...,
|
|
) -> NDArray[complexfloating]: ...
|
|
|
|
@overload
|
|
def solve(
|
|
a: _ArrayLikeInt_co,
|
|
b: _ArrayLikeInt_co,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def solve(
|
|
a: _ArrayLikeFloat_co,
|
|
b: _ArrayLikeFloat_co,
|
|
) -> NDArray[floating]: ...
|
|
@overload
|
|
def solve(
|
|
a: _ArrayLikeComplex_co,
|
|
b: _ArrayLikeComplex_co,
|
|
) -> NDArray[complexfloating]: ...
|
|
|
|
@overload
|
|
def tensorinv(
|
|
a: _ArrayLikeInt_co,
|
|
ind: int = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def tensorinv(
|
|
a: _ArrayLikeFloat_co,
|
|
ind: int = ...,
|
|
) -> NDArray[floating]: ...
|
|
@overload
|
|
def tensorinv(
|
|
a: _ArrayLikeComplex_co,
|
|
ind: int = ...,
|
|
) -> NDArray[complexfloating]: ...
|
|
|
|
@overload
|
|
def inv(a: _ArrayLikeInt_co) -> NDArray[float64]: ...
|
|
@overload
|
|
def inv(a: _ArrayLikeFloat_co) -> NDArray[floating]: ...
|
|
@overload
|
|
def inv(a: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ...
|
|
|
|
# TODO: The supported input and output dtypes are dependent on the value of `n`.
|
|
# For example: `n < 0` always casts integer types to float64
|
|
def matrix_power(
|
|
a: _ArrayLikeComplex_co | _ArrayLikeObject_co,
|
|
n: SupportsIndex,
|
|
) -> NDArray[Any]: ...
|
|
|
|
@overload
|
|
def cholesky(a: _ArrayLikeInt_co, /, *, upper: bool = False) -> NDArray[float64]: ...
|
|
@overload
|
|
def cholesky(a: _ArrayLikeFloat_co, /, *, upper: bool = False) -> NDArray[floating]: ...
|
|
@overload
|
|
def cholesky(a: _ArrayLikeComplex_co, /, *, upper: bool = False) -> NDArray[complexfloating]: ...
|
|
|
|
@overload
|
|
def outer(x1: _ArrayLike[Never], x2: _ArrayLike[Never]) -> NDArray[Any]: ...
|
|
@overload
|
|
def outer(x1: _ArrayLikeBool_co, x2: _ArrayLikeBool_co) -> NDArray[np.bool]: ...
|
|
@overload
|
|
def outer(x1: _ArrayLikeUInt_co, x2: _ArrayLikeUInt_co) -> NDArray[unsignedinteger]: ...
|
|
@overload
|
|
def outer(x1: _ArrayLikeInt_co, x2: _ArrayLikeInt_co) -> NDArray[signedinteger]: ...
|
|
@overload
|
|
def outer(x1: _ArrayLikeFloat_co, x2: _ArrayLikeFloat_co) -> NDArray[floating]: ...
|
|
@overload
|
|
def outer(
|
|
x1: _ArrayLikeComplex_co,
|
|
x2: _ArrayLikeComplex_co,
|
|
) -> NDArray[complexfloating]: ...
|
|
@overload
|
|
def outer(
|
|
x1: _ArrayLikeTD64_co,
|
|
x2: _ArrayLikeTD64_co,
|
|
out: None = ...,
|
|
) -> NDArray[timedelta64]: ...
|
|
@overload
|
|
def outer(x1: _ArrayLikeObject_co, x2: _ArrayLikeObject_co) -> NDArray[object_]: ...
|
|
@overload
|
|
def outer(
|
|
x1: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
|
|
x2: _ArrayLikeComplex_co | _ArrayLikeTD64_co | _ArrayLikeObject_co,
|
|
) -> _ArrayT: ...
|
|
|
|
@overload
|
|
def qr(a: _ArrayLikeInt_co, mode: _ModeKind = ...) -> QRResult: ...
|
|
@overload
|
|
def qr(a: _ArrayLikeFloat_co, mode: _ModeKind = ...) -> QRResult: ...
|
|
@overload
|
|
def qr(a: _ArrayLikeComplex_co, mode: _ModeKind = ...) -> QRResult: ...
|
|
|
|
@overload
|
|
def eigvals(a: _ArrayLikeInt_co) -> NDArray[float64] | NDArray[complex128]: ...
|
|
@overload
|
|
def eigvals(a: _ArrayLikeFloat_co) -> NDArray[floating] | NDArray[complexfloating]: ...
|
|
@overload
|
|
def eigvals(a: _ArrayLikeComplex_co) -> NDArray[complexfloating]: ...
|
|
|
|
@overload
|
|
def eigvalsh(a: _ArrayLikeInt_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[float64]: ...
|
|
@overload
|
|
def eigvalsh(a: _ArrayLikeComplex_co, UPLO: L["L", "U", "l", "u"] = ...) -> NDArray[floating]: ...
|
|
|
|
@overload
|
|
def eig(a: _ArrayLikeInt_co) -> EigResult: ...
|
|
@overload
|
|
def eig(a: _ArrayLikeFloat_co) -> EigResult: ...
|
|
@overload
|
|
def eig(a: _ArrayLikeComplex_co) -> EigResult: ...
|
|
|
|
@overload
|
|
def eigh(
|
|
a: _ArrayLikeInt_co,
|
|
UPLO: L["L", "U", "l", "u"] = ...,
|
|
) -> EighResult: ...
|
|
@overload
|
|
def eigh(
|
|
a: _ArrayLikeFloat_co,
|
|
UPLO: L["L", "U", "l", "u"] = ...,
|
|
) -> EighResult: ...
|
|
@overload
|
|
def eigh(
|
|
a: _ArrayLikeComplex_co,
|
|
UPLO: L["L", "U", "l", "u"] = ...,
|
|
) -> EighResult: ...
|
|
|
|
@overload
|
|
def svd(
|
|
a: _ArrayLikeInt_co,
|
|
full_matrices: bool = ...,
|
|
compute_uv: L[True] = ...,
|
|
hermitian: bool = ...,
|
|
) -> SVDResult: ...
|
|
@overload
|
|
def svd(
|
|
a: _ArrayLikeFloat_co,
|
|
full_matrices: bool = ...,
|
|
compute_uv: L[True] = ...,
|
|
hermitian: bool = ...,
|
|
) -> SVDResult: ...
|
|
@overload
|
|
def svd(
|
|
a: _ArrayLikeComplex_co,
|
|
full_matrices: bool = ...,
|
|
compute_uv: L[True] = ...,
|
|
hermitian: bool = ...,
|
|
) -> SVDResult: ...
|
|
@overload
|
|
def svd(
|
|
a: _ArrayLikeInt_co,
|
|
full_matrices: bool = ...,
|
|
compute_uv: L[False] = ...,
|
|
hermitian: bool = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def svd(
|
|
a: _ArrayLikeComplex_co,
|
|
full_matrices: bool = ...,
|
|
compute_uv: L[False] = ...,
|
|
hermitian: bool = ...,
|
|
) -> NDArray[floating]: ...
|
|
|
|
def svdvals(
|
|
x: _ArrayLikeInt_co | _ArrayLikeFloat_co | _ArrayLikeComplex_co
|
|
) -> NDArray[floating]: ...
|
|
|
|
# TODO: Returns a scalar for 2D arrays and
|
|
# a `(x.ndim - 2)`` dimensionl array otherwise
|
|
def cond(x: _ArrayLikeComplex_co, p: float | L["fro", "nuc"] | None = ...) -> Any: ...
|
|
|
|
# TODO: Returns `int` for <2D arrays and `intp` otherwise
|
|
def matrix_rank(
|
|
A: _ArrayLikeComplex_co,
|
|
tol: _ArrayLikeFloat_co | None = ...,
|
|
hermitian: bool = ...,
|
|
*,
|
|
rtol: _ArrayLikeFloat_co | None = ...,
|
|
) -> Any: ...
|
|
|
|
@overload
|
|
def pinv(
|
|
a: _ArrayLikeInt_co,
|
|
rcond: _ArrayLikeFloat_co = ...,
|
|
hermitian: bool = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def pinv(
|
|
a: _ArrayLikeFloat_co,
|
|
rcond: _ArrayLikeFloat_co = ...,
|
|
hermitian: bool = ...,
|
|
) -> NDArray[floating]: ...
|
|
@overload
|
|
def pinv(
|
|
a: _ArrayLikeComplex_co,
|
|
rcond: _ArrayLikeFloat_co = ...,
|
|
hermitian: bool = ...,
|
|
) -> NDArray[complexfloating]: ...
|
|
|
|
# TODO: Returns a 2-tuple of scalars for 2D arrays and
|
|
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
|
|
def slogdet(a: _ArrayLikeComplex_co) -> SlogdetResult: ...
|
|
|
|
# TODO: Returns a 2-tuple of scalars for 2D arrays and
|
|
# a 2-tuple of `(a.ndim - 2)`` dimensionl arrays otherwise
|
|
def det(a: _ArrayLikeComplex_co) -> Any: ...
|
|
|
|
@overload
|
|
def lstsq(a: _ArrayLikeInt_co, b: _ArrayLikeInt_co, rcond: float | None = ...) -> tuple[
|
|
NDArray[float64],
|
|
NDArray[float64],
|
|
int32,
|
|
NDArray[float64],
|
|
]: ...
|
|
@overload
|
|
def lstsq(a: _ArrayLikeFloat_co, b: _ArrayLikeFloat_co, rcond: float | None = ...) -> tuple[
|
|
NDArray[floating],
|
|
NDArray[floating],
|
|
int32,
|
|
NDArray[floating],
|
|
]: ...
|
|
@overload
|
|
def lstsq(a: _ArrayLikeComplex_co, b: _ArrayLikeComplex_co, rcond: float | None = ...) -> tuple[
|
|
NDArray[complexfloating],
|
|
NDArray[floating],
|
|
int32,
|
|
NDArray[floating],
|
|
]: ...
|
|
|
|
@overload
|
|
def norm(
|
|
x: ArrayLike,
|
|
ord: float | L["fro", "nuc"] | None = ...,
|
|
axis: None = ...,
|
|
keepdims: bool = ...,
|
|
) -> floating: ...
|
|
@overload
|
|
def norm(
|
|
x: ArrayLike,
|
|
ord: float | L["fro", "nuc"] | None = ...,
|
|
axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
|
|
keepdims: bool = ...,
|
|
) -> Any: ...
|
|
|
|
@overload
|
|
def matrix_norm(
|
|
x: ArrayLike,
|
|
/,
|
|
*,
|
|
ord: float | L["fro", "nuc"] | None = ...,
|
|
keepdims: bool = ...,
|
|
) -> floating: ...
|
|
@overload
|
|
def matrix_norm(
|
|
x: ArrayLike,
|
|
/,
|
|
*,
|
|
ord: float | L["fro", "nuc"] | None = ...,
|
|
keepdims: bool = ...,
|
|
) -> Any: ...
|
|
|
|
@overload
|
|
def vector_norm(
|
|
x: ArrayLike,
|
|
/,
|
|
*,
|
|
axis: None = ...,
|
|
ord: float | None = ...,
|
|
keepdims: bool = ...,
|
|
) -> floating: ...
|
|
@overload
|
|
def vector_norm(
|
|
x: ArrayLike,
|
|
/,
|
|
*,
|
|
axis: SupportsInt | SupportsIndex | tuple[int, ...] = ...,
|
|
ord: float | None = ...,
|
|
keepdims: bool = ...,
|
|
) -> Any: ...
|
|
|
|
# TODO: Returns a scalar or array
|
|
def multi_dot(
|
|
arrays: Iterable[_ArrayLikeComplex_co | _ArrayLikeObject_co | _ArrayLikeTD64_co],
|
|
*,
|
|
out: NDArray[Any] | None = ...,
|
|
) -> Any: ...
|
|
|
|
def diagonal(
|
|
x: ArrayLike, # >= 2D array
|
|
/,
|
|
*,
|
|
offset: SupportsIndex = ...,
|
|
) -> NDArray[Any]: ...
|
|
|
|
def trace(
|
|
x: ArrayLike, # >= 2D array
|
|
/,
|
|
*,
|
|
offset: SupportsIndex = ...,
|
|
dtype: DTypeLike = ...,
|
|
) -> Any: ...
|
|
|
|
@overload
|
|
def cross(
|
|
x1: _ArrayLikeUInt_co,
|
|
x2: _ArrayLikeUInt_co,
|
|
/,
|
|
*,
|
|
axis: int = ...,
|
|
) -> NDArray[unsignedinteger]: ...
|
|
@overload
|
|
def cross(
|
|
x1: _ArrayLikeInt_co,
|
|
x2: _ArrayLikeInt_co,
|
|
/,
|
|
*,
|
|
axis: int = ...,
|
|
) -> NDArray[signedinteger]: ...
|
|
@overload
|
|
def cross(
|
|
x1: _ArrayLikeFloat_co,
|
|
x2: _ArrayLikeFloat_co,
|
|
/,
|
|
*,
|
|
axis: int = ...,
|
|
) -> NDArray[floating]: ...
|
|
@overload
|
|
def cross(
|
|
x1: _ArrayLikeComplex_co,
|
|
x2: _ArrayLikeComplex_co,
|
|
/,
|
|
*,
|
|
axis: int = ...,
|
|
) -> NDArray[complexfloating]: ...
|
|
|
|
@overload
|
|
def matmul(
|
|
x1: _ArrayLikeInt_co,
|
|
x2: _ArrayLikeInt_co,
|
|
) -> NDArray[signedinteger]: ...
|
|
@overload
|
|
def matmul(
|
|
x1: _ArrayLikeUInt_co,
|
|
x2: _ArrayLikeUInt_co,
|
|
) -> NDArray[unsignedinteger]: ...
|
|
@overload
|
|
def matmul(
|
|
x1: _ArrayLikeFloat_co,
|
|
x2: _ArrayLikeFloat_co,
|
|
) -> NDArray[floating]: ...
|
|
@overload
|
|
def matmul(
|
|
x1: _ArrayLikeComplex_co,
|
|
x2: _ArrayLikeComplex_co,
|
|
) -> NDArray[complexfloating]: ...
|