856 lines
23 KiB
Python
856 lines
23 KiB
Python
from collections.abc import Callable
|
|
from typing import Any, Literal, TypeAlias, TypeVar, overload
|
|
|
|
import numpy as np
|
|
from numpy import dtype, float32, float64, int64
|
|
from numpy._typing import (
|
|
ArrayLike,
|
|
DTypeLike,
|
|
NDArray,
|
|
_ArrayLikeFloat_co,
|
|
_ArrayLikeInt_co,
|
|
_BoolCodes,
|
|
_DoubleCodes,
|
|
_DTypeLike,
|
|
_DTypeLikeBool,
|
|
_Float32Codes,
|
|
_Float64Codes,
|
|
_FloatLike_co,
|
|
_Int8Codes,
|
|
_Int16Codes,
|
|
_Int32Codes,
|
|
_Int64Codes,
|
|
_IntPCodes,
|
|
_ShapeLike,
|
|
_SingleCodes,
|
|
_SupportsDType,
|
|
_UInt8Codes,
|
|
_UInt16Codes,
|
|
_UInt32Codes,
|
|
_UInt64Codes,
|
|
_UIntPCodes,
|
|
)
|
|
from numpy.random import BitGenerator, RandomState, SeedSequence
|
|
|
|
_IntegerT = TypeVar("_IntegerT", bound=np.integer)
|
|
|
|
_DTypeLikeFloat32: TypeAlias = (
|
|
dtype[float32]
|
|
| _SupportsDType[dtype[float32]]
|
|
| type[float32]
|
|
| _Float32Codes
|
|
| _SingleCodes
|
|
)
|
|
|
|
_DTypeLikeFloat64: TypeAlias = (
|
|
dtype[float64]
|
|
| _SupportsDType[dtype[float64]]
|
|
| type[float]
|
|
| type[float64]
|
|
| _Float64Codes
|
|
| _DoubleCodes
|
|
)
|
|
|
|
class Generator:
|
|
def __init__(self, bit_generator: BitGenerator) -> None: ...
|
|
def __repr__(self) -> str: ...
|
|
def __str__(self) -> str: ...
|
|
def __getstate__(self) -> None: ...
|
|
def __setstate__(self, state: dict[str, Any] | None) -> None: ...
|
|
def __reduce__(self) -> tuple[
|
|
Callable[[BitGenerator], Generator],
|
|
tuple[BitGenerator],
|
|
None]: ...
|
|
@property
|
|
def bit_generator(self) -> BitGenerator: ...
|
|
def spawn(self, n_children: int) -> list[Generator]: ...
|
|
def bytes(self, length: int) -> bytes: ...
|
|
@overload
|
|
def standard_normal( # type: ignore[misc]
|
|
self,
|
|
size: None = ...,
|
|
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
|
|
out: None = ...,
|
|
) -> float: ...
|
|
@overload
|
|
def standard_normal( # type: ignore[misc]
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def standard_normal( # type: ignore[misc]
|
|
self,
|
|
*,
|
|
out: NDArray[float64] = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def standard_normal( # type: ignore[misc]
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
dtype: _DTypeLikeFloat32 = ...,
|
|
out: NDArray[float32] | None = ...,
|
|
) -> NDArray[float32]: ...
|
|
@overload
|
|
def standard_normal( # type: ignore[misc]
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
dtype: _DTypeLikeFloat64 = ...,
|
|
out: NDArray[float64] | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def permutation(self, x: int, axis: int = ...) -> NDArray[int64]: ...
|
|
@overload
|
|
def permutation(self, x: ArrayLike, axis: int = ...) -> NDArray[Any]: ...
|
|
@overload
|
|
def standard_exponential( # type: ignore[misc]
|
|
self,
|
|
size: None = ...,
|
|
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
|
|
method: Literal["zig", "inv"] = ...,
|
|
out: None = ...,
|
|
) -> float: ...
|
|
@overload
|
|
def standard_exponential(
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def standard_exponential(
|
|
self,
|
|
*,
|
|
out: NDArray[float64] = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def standard_exponential(
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
*,
|
|
method: Literal["zig", "inv"] = ...,
|
|
out: NDArray[float64] | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def standard_exponential(
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
dtype: _DTypeLikeFloat32 = ...,
|
|
method: Literal["zig", "inv"] = ...,
|
|
out: NDArray[float32] | None = ...,
|
|
) -> NDArray[float32]: ...
|
|
@overload
|
|
def standard_exponential(
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
dtype: _DTypeLikeFloat64 = ...,
|
|
method: Literal["zig", "inv"] = ...,
|
|
out: NDArray[float64] | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def random( # type: ignore[misc]
|
|
self,
|
|
size: None = ...,
|
|
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
|
|
out: None = ...,
|
|
) -> float: ...
|
|
@overload
|
|
def random(
|
|
self,
|
|
*,
|
|
out: NDArray[float64] = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def random(
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
*,
|
|
out: NDArray[float64] | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def random(
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
dtype: _DTypeLikeFloat32 = ...,
|
|
out: NDArray[float32] | None = ...,
|
|
) -> NDArray[float32]: ...
|
|
@overload
|
|
def random(
|
|
self,
|
|
size: _ShapeLike = ...,
|
|
dtype: _DTypeLikeFloat64 = ...,
|
|
out: NDArray[float64] | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def beta(
|
|
self,
|
|
a: _FloatLike_co,
|
|
b: _FloatLike_co,
|
|
size: None = ...,
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def beta(
|
|
self,
|
|
a: _ArrayLikeFloat_co,
|
|
b: _ArrayLikeFloat_co,
|
|
size: _ShapeLike | None = ...
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def exponential(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def exponential(self, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ...) -> NDArray[float64]: ...
|
|
|
|
#
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: int,
|
|
high: int | None = None,
|
|
size: None = None,
|
|
dtype: _DTypeLike[np.int64] | _Int64Codes = ...,
|
|
endpoint: bool = False,
|
|
) -> np.int64: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: int,
|
|
high: int | None = None,
|
|
size: None = None,
|
|
*,
|
|
dtype: type[bool],
|
|
endpoint: bool = False,
|
|
) -> bool: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: int,
|
|
high: int | None = None,
|
|
size: None = None,
|
|
*,
|
|
dtype: type[int],
|
|
endpoint: bool = False,
|
|
) -> int: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: int,
|
|
high: int | None = None,
|
|
size: None = None,
|
|
*,
|
|
dtype: _DTypeLike[np.bool] | _BoolCodes,
|
|
endpoint: bool = False,
|
|
) -> np.bool: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: int,
|
|
high: int | None = None,
|
|
size: None = None,
|
|
*,
|
|
dtype: _DTypeLike[_IntegerT],
|
|
endpoint: bool = False,
|
|
) -> _IntegerT: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: _ArrayLikeInt_co | None = None,
|
|
size: _ShapeLike | None = None,
|
|
dtype: _DTypeLike[np.int64] | _Int64Codes = ...,
|
|
endpoint: bool = False,
|
|
) -> NDArray[np.int64]: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: _ArrayLikeInt_co | None = None,
|
|
size: _ShapeLike | None = None,
|
|
*,
|
|
dtype: _DTypeLikeBool,
|
|
endpoint: bool = False,
|
|
) -> NDArray[np.bool]: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: _ArrayLikeInt_co | None = None,
|
|
size: _ShapeLike | None = None,
|
|
*,
|
|
dtype: _DTypeLike[_IntegerT],
|
|
endpoint: bool = False,
|
|
) -> NDArray[_IntegerT]: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: int,
|
|
high: int | None = None,
|
|
size: None = None,
|
|
*,
|
|
dtype: _Int8Codes,
|
|
endpoint: bool = False,
|
|
) -> np.int8: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: _ArrayLikeInt_co | None = None,
|
|
size: _ShapeLike | None = None,
|
|
*,
|
|
dtype: _Int8Codes,
|
|
endpoint: bool = False,
|
|
) -> NDArray[np.int8]: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: int,
|
|
high: int | None = None,
|
|
size: None = None,
|
|
*,
|
|
dtype: _UInt8Codes,
|
|
endpoint: bool = False,
|
|
) -> np.uint8: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: _ArrayLikeInt_co | None = None,
|
|
size: _ShapeLike | None = None,
|
|
*,
|
|
dtype: _UInt8Codes,
|
|
endpoint: bool = False,
|
|
) -> NDArray[np.uint8]: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: int,
|
|
high: int | None = None,
|
|
size: None = None,
|
|
*,
|
|
dtype: _Int16Codes,
|
|
endpoint: bool = False,
|
|
) -> np.int16: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: _ArrayLikeInt_co | None = None,
|
|
size: _ShapeLike | None = None,
|
|
*,
|
|
dtype: _Int16Codes,
|
|
endpoint: bool = False,
|
|
) -> NDArray[np.int16]: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: int,
|
|
high: int | None = None,
|
|
size: None = None,
|
|
*,
|
|
dtype: _UInt16Codes,
|
|
endpoint: bool = False,
|
|
) -> np.uint16: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: _ArrayLikeInt_co | None = None,
|
|
size: _ShapeLike | None = None,
|
|
*,
|
|
dtype: _UInt16Codes,
|
|
endpoint: bool = False,
|
|
) -> NDArray[np.uint16]: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: int,
|
|
high: int | None = None,
|
|
size: None = None,
|
|
*,
|
|
dtype: _Int32Codes,
|
|
endpoint: bool = False,
|
|
) -> np.int32: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: _ArrayLikeInt_co | None = None,
|
|
size: _ShapeLike | None = None,
|
|
*,
|
|
dtype: _Int32Codes,
|
|
endpoint: bool = False,
|
|
) -> NDArray[np.int32]: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: int,
|
|
high: int | None = None,
|
|
size: None = None,
|
|
*,
|
|
dtype: _UInt32Codes,
|
|
endpoint: bool = False,
|
|
) -> np.uint32: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: _ArrayLikeInt_co | None = None,
|
|
size: _ShapeLike | None = None,
|
|
*,
|
|
dtype: _UInt32Codes,
|
|
endpoint: bool = False,
|
|
) -> NDArray[np.uint32]: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: int,
|
|
high: int | None = None,
|
|
size: None = None,
|
|
*,
|
|
dtype: _UInt64Codes,
|
|
endpoint: bool = False,
|
|
) -> np.uint64: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: _ArrayLikeInt_co | None = None,
|
|
size: _ShapeLike | None = None,
|
|
*,
|
|
dtype: _UInt64Codes,
|
|
endpoint: bool = False,
|
|
) -> NDArray[np.uint64]: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: int,
|
|
high: int | None = None,
|
|
size: None = None,
|
|
*,
|
|
dtype: _IntPCodes,
|
|
endpoint: bool = False,
|
|
) -> np.intp: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: _ArrayLikeInt_co | None = None,
|
|
size: _ShapeLike | None = None,
|
|
*,
|
|
dtype: _IntPCodes,
|
|
endpoint: bool = False,
|
|
) -> NDArray[np.intp]: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: int,
|
|
high: int | None = None,
|
|
size: None = None,
|
|
*,
|
|
dtype: _UIntPCodes,
|
|
endpoint: bool = False,
|
|
) -> np.uintp: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: _ArrayLikeInt_co | None = None,
|
|
size: _ShapeLike | None = None,
|
|
*,
|
|
dtype: _UIntPCodes,
|
|
endpoint: bool = False,
|
|
) -> NDArray[np.uintp]: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: int,
|
|
high: int | None = None,
|
|
size: None = None,
|
|
dtype: DTypeLike = ...,
|
|
endpoint: bool = False,
|
|
) -> Any: ...
|
|
@overload
|
|
def integers(
|
|
self,
|
|
low: _ArrayLikeInt_co,
|
|
high: _ArrayLikeInt_co | None = None,
|
|
size: _ShapeLike | None = None,
|
|
dtype: DTypeLike = ...,
|
|
endpoint: bool = False,
|
|
) -> NDArray[Any]: ...
|
|
|
|
# TODO: Use a TypeVar _T here to get away from Any output?
|
|
# Should be int->NDArray[int64], ArrayLike[_T] -> _T | NDArray[Any]
|
|
@overload
|
|
def choice(
|
|
self,
|
|
a: int,
|
|
size: None = ...,
|
|
replace: bool = ...,
|
|
p: _ArrayLikeFloat_co | None = ...,
|
|
axis: int = ...,
|
|
shuffle: bool = ...,
|
|
) -> int: ...
|
|
@overload
|
|
def choice(
|
|
self,
|
|
a: int,
|
|
size: _ShapeLike = ...,
|
|
replace: bool = ...,
|
|
p: _ArrayLikeFloat_co | None = ...,
|
|
axis: int = ...,
|
|
shuffle: bool = ...,
|
|
) -> NDArray[int64]: ...
|
|
@overload
|
|
def choice(
|
|
self,
|
|
a: ArrayLike,
|
|
size: None = ...,
|
|
replace: bool = ...,
|
|
p: _ArrayLikeFloat_co | None = ...,
|
|
axis: int = ...,
|
|
shuffle: bool = ...,
|
|
) -> Any: ...
|
|
@overload
|
|
def choice(
|
|
self,
|
|
a: ArrayLike,
|
|
size: _ShapeLike = ...,
|
|
replace: bool = ...,
|
|
p: _ArrayLikeFloat_co | None = ...,
|
|
axis: int = ...,
|
|
shuffle: bool = ...,
|
|
) -> NDArray[Any]: ...
|
|
@overload
|
|
def uniform(
|
|
self,
|
|
low: _FloatLike_co = ...,
|
|
high: _FloatLike_co = ...,
|
|
size: None = ...,
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def uniform(
|
|
self,
|
|
low: _ArrayLikeFloat_co = ...,
|
|
high: _ArrayLikeFloat_co = ...,
|
|
size: _ShapeLike | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def normal(
|
|
self,
|
|
loc: _FloatLike_co = ...,
|
|
scale: _FloatLike_co = ...,
|
|
size: None = ...,
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def normal(
|
|
self,
|
|
loc: _ArrayLikeFloat_co = ...,
|
|
scale: _ArrayLikeFloat_co = ...,
|
|
size: _ShapeLike | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def standard_gamma( # type: ignore[misc]
|
|
self,
|
|
shape: _FloatLike_co,
|
|
size: None = ...,
|
|
dtype: _DTypeLikeFloat32 | _DTypeLikeFloat64 = ...,
|
|
out: None = ...,
|
|
) -> float: ...
|
|
@overload
|
|
def standard_gamma(
|
|
self,
|
|
shape: _ArrayLikeFloat_co,
|
|
size: _ShapeLike | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def standard_gamma(
|
|
self,
|
|
shape: _ArrayLikeFloat_co,
|
|
*,
|
|
out: NDArray[float64] = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def standard_gamma(
|
|
self,
|
|
shape: _ArrayLikeFloat_co,
|
|
size: _ShapeLike | None = ...,
|
|
dtype: _DTypeLikeFloat32 = ...,
|
|
out: NDArray[float32] | None = ...,
|
|
) -> NDArray[float32]: ...
|
|
@overload
|
|
def standard_gamma(
|
|
self,
|
|
shape: _ArrayLikeFloat_co,
|
|
size: _ShapeLike | None = ...,
|
|
dtype: _DTypeLikeFloat64 = ...,
|
|
out: NDArray[float64] | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def gamma(
|
|
self, shape: _FloatLike_co, scale: _FloatLike_co = ..., size: None = ...
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def gamma(
|
|
self,
|
|
shape: _ArrayLikeFloat_co,
|
|
scale: _ArrayLikeFloat_co = ...,
|
|
size: _ShapeLike | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def f(
|
|
self, dfnum: _FloatLike_co, dfden: _FloatLike_co, size: None = ...
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def f(
|
|
self,
|
|
dfnum: _ArrayLikeFloat_co,
|
|
dfden: _ArrayLikeFloat_co,
|
|
size: _ShapeLike | None = ...
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def noncentral_f(
|
|
self,
|
|
dfnum: _FloatLike_co,
|
|
dfden: _FloatLike_co,
|
|
nonc: _FloatLike_co, size: None = ...
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def noncentral_f(
|
|
self,
|
|
dfnum: _ArrayLikeFloat_co,
|
|
dfden: _ArrayLikeFloat_co,
|
|
nonc: _ArrayLikeFloat_co,
|
|
size: _ShapeLike | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def chisquare(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def chisquare(
|
|
self, df: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def noncentral_chisquare(
|
|
self, df: _FloatLike_co, nonc: _FloatLike_co, size: None = ...
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def noncentral_chisquare(
|
|
self,
|
|
df: _ArrayLikeFloat_co,
|
|
nonc: _ArrayLikeFloat_co,
|
|
size: _ShapeLike | None = ...
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def standard_t(self, df: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def standard_t(
|
|
self, df: _ArrayLikeFloat_co, size: None = ...
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def standard_t(
|
|
self, df: _ArrayLikeFloat_co, size: _ShapeLike = ...
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def vonmises(
|
|
self, mu: _FloatLike_co, kappa: _FloatLike_co, size: None = ...
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def vonmises(
|
|
self,
|
|
mu: _ArrayLikeFloat_co,
|
|
kappa: _ArrayLikeFloat_co,
|
|
size: _ShapeLike | None = ...
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def pareto(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def pareto(
|
|
self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def weibull(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def weibull(
|
|
self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def power(self, a: _FloatLike_co, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def power(
|
|
self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def standard_cauchy(self, size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def standard_cauchy(self, size: _ShapeLike = ...) -> NDArray[float64]: ...
|
|
@overload
|
|
def laplace(
|
|
self,
|
|
loc: _FloatLike_co = ...,
|
|
scale: _FloatLike_co = ...,
|
|
size: None = ...,
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def laplace(
|
|
self,
|
|
loc: _ArrayLikeFloat_co = ...,
|
|
scale: _ArrayLikeFloat_co = ...,
|
|
size: _ShapeLike | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def gumbel(
|
|
self,
|
|
loc: _FloatLike_co = ...,
|
|
scale: _FloatLike_co = ...,
|
|
size: None = ...,
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def gumbel(
|
|
self,
|
|
loc: _ArrayLikeFloat_co = ...,
|
|
scale: _ArrayLikeFloat_co = ...,
|
|
size: _ShapeLike | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def logistic(
|
|
self,
|
|
loc: _FloatLike_co = ...,
|
|
scale: _FloatLike_co = ...,
|
|
size: None = ...,
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def logistic(
|
|
self,
|
|
loc: _ArrayLikeFloat_co = ...,
|
|
scale: _ArrayLikeFloat_co = ...,
|
|
size: _ShapeLike | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def lognormal(
|
|
self,
|
|
mean: _FloatLike_co = ...,
|
|
sigma: _FloatLike_co = ...,
|
|
size: None = ...,
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def lognormal(
|
|
self,
|
|
mean: _ArrayLikeFloat_co = ...,
|
|
sigma: _ArrayLikeFloat_co = ...,
|
|
size: _ShapeLike | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def rayleigh(self, scale: _FloatLike_co = ..., size: None = ...) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def rayleigh(
|
|
self, scale: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ...
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def wald(
|
|
self, mean: _FloatLike_co, scale: _FloatLike_co, size: None = ...
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def wald(
|
|
self,
|
|
mean: _ArrayLikeFloat_co,
|
|
scale: _ArrayLikeFloat_co,
|
|
size: _ShapeLike | None = ...
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def triangular(
|
|
self,
|
|
left: _FloatLike_co,
|
|
mode: _FloatLike_co,
|
|
right: _FloatLike_co,
|
|
size: None = ...,
|
|
) -> float: ... # type: ignore[misc]
|
|
@overload
|
|
def triangular(
|
|
self,
|
|
left: _ArrayLikeFloat_co,
|
|
mode: _ArrayLikeFloat_co,
|
|
right: _ArrayLikeFloat_co,
|
|
size: _ShapeLike | None = ...,
|
|
) -> NDArray[float64]: ...
|
|
@overload
|
|
def binomial(self, n: int, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
|
@overload
|
|
def binomial(
|
|
self, n: _ArrayLikeInt_co, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
|
) -> NDArray[int64]: ...
|
|
@overload
|
|
def negative_binomial(
|
|
self, n: _FloatLike_co, p: _FloatLike_co, size: None = ...
|
|
) -> int: ... # type: ignore[misc]
|
|
@overload
|
|
def negative_binomial(
|
|
self,
|
|
n: _ArrayLikeFloat_co,
|
|
p: _ArrayLikeFloat_co,
|
|
size: _ShapeLike | None = ...
|
|
) -> NDArray[int64]: ...
|
|
@overload
|
|
def poisson(self, lam: _FloatLike_co = ..., size: None = ...) -> int: ... # type: ignore[misc]
|
|
@overload
|
|
def poisson(
|
|
self, lam: _ArrayLikeFloat_co = ..., size: _ShapeLike | None = ...
|
|
) -> NDArray[int64]: ...
|
|
@overload
|
|
def zipf(self, a: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
|
@overload
|
|
def zipf(
|
|
self, a: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
|
) -> NDArray[int64]: ...
|
|
@overload
|
|
def geometric(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
|
@overload
|
|
def geometric(
|
|
self, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
|
) -> NDArray[int64]: ...
|
|
@overload
|
|
def hypergeometric(
|
|
self, ngood: int, nbad: int, nsample: int, size: None = ...
|
|
) -> int: ... # type: ignore[misc]
|
|
@overload
|
|
def hypergeometric(
|
|
self,
|
|
ngood: _ArrayLikeInt_co,
|
|
nbad: _ArrayLikeInt_co,
|
|
nsample: _ArrayLikeInt_co,
|
|
size: _ShapeLike | None = ...,
|
|
) -> NDArray[int64]: ...
|
|
@overload
|
|
def logseries(self, p: _FloatLike_co, size: None = ...) -> int: ... # type: ignore[misc]
|
|
@overload
|
|
def logseries(
|
|
self, p: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
|
) -> NDArray[int64]: ...
|
|
def multivariate_normal(
|
|
self,
|
|
mean: _ArrayLikeFloat_co,
|
|
cov: _ArrayLikeFloat_co,
|
|
size: _ShapeLike | None = ...,
|
|
check_valid: Literal["warn", "raise", "ignore"] = ...,
|
|
tol: float = ...,
|
|
*,
|
|
method: Literal["svd", "eigh", "cholesky"] = ...,
|
|
) -> NDArray[float64]: ...
|
|
def multinomial(
|
|
self, n: _ArrayLikeInt_co,
|
|
pvals: _ArrayLikeFloat_co,
|
|
size: _ShapeLike | None = ...
|
|
) -> NDArray[int64]: ...
|
|
def multivariate_hypergeometric(
|
|
self,
|
|
colors: _ArrayLikeInt_co,
|
|
nsample: int,
|
|
size: _ShapeLike | None = ...,
|
|
method: Literal["marginals", "count"] = ...,
|
|
) -> NDArray[int64]: ...
|
|
def dirichlet(
|
|
self, alpha: _ArrayLikeFloat_co, size: _ShapeLike | None = ...
|
|
) -> NDArray[float64]: ...
|
|
def permuted(
|
|
self, x: ArrayLike, *, axis: int | None = ..., out: NDArray[Any] | None = ...
|
|
) -> NDArray[Any]: ...
|
|
def shuffle(self, x: ArrayLike, axis: int = ...) -> None: ...
|
|
|
|
def default_rng(
|
|
seed: _ArrayLikeInt_co | SeedSequence | BitGenerator | Generator | RandomState | None = ...
|
|
) -> Generator: ...
|