387 lines
14 KiB
Python
387 lines
14 KiB
Python
import inspect
|
|
|
|
import numpy as np
|
|
|
|
from ..utils import get_arrays_tol
|
|
|
|
|
|
TINY = np.finfo(float).tiny
|
|
|
|
|
|
def cauchy_geometry(const, grad, curv, xl, xu, delta, debug):
|
|
r"""
|
|
Maximize approximately the absolute value of a quadratic function subject
|
|
to bound constraints in a trust region.
|
|
|
|
This function solves approximately
|
|
|
|
.. math::
|
|
|
|
\max_{s \in \mathbb{R}^n} \quad \bigg\lvert c + g^{\mathsf{T}} s +
|
|
\frac{1}{2} s^{\mathsf{T}} H s \bigg\rvert \quad \text{s.t.} \quad
|
|
\left\{ \begin{array}{l}
|
|
l \le s \le u,\\
|
|
\lVert s \rVert \le \Delta,
|
|
\end{array} \right.
|
|
|
|
by maximizing the objective function along the constrained Cauchy
|
|
direction.
|
|
|
|
Parameters
|
|
----------
|
|
const : float
|
|
Constant :math:`c` as shown above.
|
|
grad : `numpy.ndarray`, shape (n,)
|
|
Gradient :math:`g` as shown above.
|
|
curv : callable
|
|
Curvature of :math:`H` along any vector.
|
|
|
|
``curv(s) -> float``
|
|
|
|
returns :math:`s^{\mathsf{T}} H s`.
|
|
xl : `numpy.ndarray`, shape (n,)
|
|
Lower bounds :math:`l` as shown above.
|
|
xu : `numpy.ndarray`, shape (n,)
|
|
Upper bounds :math:`u` as shown above.
|
|
delta : float
|
|
Trust-region radius :math:`\Delta` as shown above.
|
|
debug : bool
|
|
Whether to make debugging tests during the execution.
|
|
|
|
Returns
|
|
-------
|
|
`numpy.ndarray`, shape (n,)
|
|
Approximate solution :math:`s`.
|
|
|
|
Notes
|
|
-----
|
|
This function is described as the first alternative in Section 6.5 of [1]_.
|
|
It is assumed that the origin is feasible with respect to the bound
|
|
constraints and that `delta` is finite and positive.
|
|
|
|
References
|
|
----------
|
|
.. [1] T. M. Ragonneau. *Model-Based Derivative-Free Optimization Methods
|
|
and Software*. PhD thesis, Department of Applied Mathematics, The Hong
|
|
Kong Polytechnic University, Hong Kong, China, 2022. URL:
|
|
https://theses.lib.polyu.edu.hk/handle/200/12294.
|
|
"""
|
|
if debug:
|
|
assert isinstance(const, float)
|
|
assert isinstance(grad, np.ndarray) and grad.ndim == 1
|
|
assert inspect.signature(curv).bind(grad)
|
|
assert isinstance(xl, np.ndarray) and xl.shape == grad.shape
|
|
assert isinstance(xu, np.ndarray) and xu.shape == grad.shape
|
|
assert isinstance(delta, float)
|
|
assert isinstance(debug, bool)
|
|
tol = get_arrays_tol(xl, xu)
|
|
assert np.all(xl <= tol)
|
|
assert np.all(xu >= -tol)
|
|
assert np.isfinite(delta) and delta > 0.0
|
|
xl = np.minimum(xl, 0.0)
|
|
xu = np.maximum(xu, 0.0)
|
|
|
|
# To maximize the absolute value of a quadratic function, we maximize the
|
|
# function itself or its negative, and we choose the solution that provides
|
|
# the largest function value.
|
|
step1, q_val1 = _cauchy_geom(const, grad, curv, xl, xu, delta, debug)
|
|
step2, q_val2 = _cauchy_geom(
|
|
-const,
|
|
-grad,
|
|
lambda x: -curv(x),
|
|
xl,
|
|
xu,
|
|
delta,
|
|
debug,
|
|
)
|
|
step = step1 if abs(q_val1) >= abs(q_val2) else step2
|
|
|
|
if debug:
|
|
assert np.all(xl <= step)
|
|
assert np.all(step <= xu)
|
|
assert np.linalg.norm(step) < 1.1 * delta
|
|
return step
|
|
|
|
|
|
def spider_geometry(const, grad, curv, xpt, xl, xu, delta, debug):
|
|
r"""
|
|
Maximize approximately the absolute value of a quadratic function subject
|
|
to bound constraints in a trust region.
|
|
|
|
This function solves approximately
|
|
|
|
.. math::
|
|
|
|
\max_{s \in \mathbb{R}^n} \quad \bigg\lvert c + g^{\mathsf{T}} s +
|
|
\frac{1}{2} s^{\mathsf{T}} H s \bigg\rvert \quad \text{s.t.} \quad
|
|
\left\{ \begin{array}{l}
|
|
l \le s \le u,\\
|
|
\lVert s \rVert \le \Delta,
|
|
\end{array} \right.
|
|
|
|
by maximizing the objective function along given straight lines.
|
|
|
|
Parameters
|
|
----------
|
|
const : float
|
|
Constant :math:`c` as shown above.
|
|
grad : `numpy.ndarray`, shape (n,)
|
|
Gradient :math:`g` as shown above.
|
|
curv : callable
|
|
Curvature of :math:`H` along any vector.
|
|
|
|
``curv(s) -> float``
|
|
|
|
returns :math:`s^{\mathsf{T}} H s`.
|
|
xpt : `numpy.ndarray`, shape (n, npt)
|
|
Points defining the straight lines. The straight lines considered are
|
|
the ones passing through the origin and the points in `xpt`.
|
|
xl : `numpy.ndarray`, shape (n,)
|
|
Lower bounds :math:`l` as shown above.
|
|
xu : `numpy.ndarray`, shape (n,)
|
|
Upper bounds :math:`u` as shown above.
|
|
delta : float
|
|
Trust-region radius :math:`\Delta` as shown above.
|
|
debug : bool
|
|
Whether to make debugging tests during the execution.
|
|
|
|
Returns
|
|
-------
|
|
`numpy.ndarray`, shape (n,)
|
|
Approximate solution :math:`s`.
|
|
|
|
Notes
|
|
-----
|
|
This function is described as the second alternative in Section 6.5 of
|
|
[1]_. It is assumed that the origin is feasible with respect to the bound
|
|
constraints and that `delta` is finite and positive.
|
|
|
|
References
|
|
----------
|
|
.. [1] T. M. Ragonneau. *Model-Based Derivative-Free Optimization Methods
|
|
and Software*. PhD thesis, Department of Applied Mathematics, The Hong
|
|
Kong Polytechnic University, Hong Kong, China, 2022. URL:
|
|
https://theses.lib.polyu.edu.hk/handle/200/12294.
|
|
"""
|
|
if debug:
|
|
assert isinstance(const, float)
|
|
assert isinstance(grad, np.ndarray) and grad.ndim == 1
|
|
assert inspect.signature(curv).bind(grad)
|
|
assert (
|
|
isinstance(xpt, np.ndarray)
|
|
and xpt.ndim == 2
|
|
and xpt.shape[0] == grad.size
|
|
)
|
|
assert isinstance(xl, np.ndarray) and xl.shape == grad.shape
|
|
assert isinstance(xu, np.ndarray) and xu.shape == grad.shape
|
|
assert isinstance(delta, float)
|
|
assert isinstance(debug, bool)
|
|
tol = get_arrays_tol(xl, xu)
|
|
assert np.all(xl <= tol)
|
|
assert np.all(xu >= -tol)
|
|
assert np.isfinite(delta) and delta > 0.0
|
|
xl = np.minimum(xl, 0.0)
|
|
xu = np.maximum(xu, 0.0)
|
|
|
|
# Iterate through the straight lines.
|
|
step = np.zeros_like(grad)
|
|
q_val = const
|
|
s_norm = np.linalg.norm(xpt, axis=0)
|
|
|
|
# Set alpha_xl to the step size for the lower-bound constraint and
|
|
# alpha_xu to the step size for the upper-bound constraint.
|
|
|
|
# xl.shape = (N,)
|
|
# xpt.shape = (N, M)
|
|
# i_xl_pos.shape = (M, N)
|
|
i_xl_pos = (xl > -np.inf) & (xpt.T > -TINY * xl)
|
|
i_xl_neg = (xl > -np.inf) & (xpt.T < TINY * xl)
|
|
i_xu_pos = (xu < np.inf) & (xpt.T > TINY * xu)
|
|
i_xu_neg = (xu < np.inf) & (xpt.T < -TINY * xu)
|
|
|
|
# (M, N)
|
|
alpha_xl_pos = np.atleast_2d(
|
|
np.broadcast_to(xl, i_xl_pos.shape)[i_xl_pos] / xpt.T[i_xl_pos]
|
|
)
|
|
# (M,)
|
|
alpha_xl_pos = np.max(alpha_xl_pos, axis=1, initial=-np.inf)
|
|
# make sure it's (M,)
|
|
alpha_xl_pos = np.broadcast_to(np.atleast_1d(alpha_xl_pos), xpt.shape[1])
|
|
|
|
alpha_xl_neg = np.atleast_2d(
|
|
np.broadcast_to(xl, i_xl_neg.shape)[i_xl_neg] / xpt.T[i_xl_neg]
|
|
)
|
|
alpha_xl_neg = np.max(alpha_xl_neg, axis=1, initial=np.inf)
|
|
alpha_xl_neg = np.broadcast_to(np.atleast_1d(alpha_xl_neg), xpt.shape[1])
|
|
|
|
alpha_xu_neg = np.atleast_2d(
|
|
np.broadcast_to(xu, i_xu_neg.shape)[i_xu_neg] / xpt.T[i_xu_neg]
|
|
)
|
|
alpha_xu_neg = np.max(alpha_xu_neg, axis=1, initial=-np.inf)
|
|
alpha_xu_neg = np.broadcast_to(np.atleast_1d(alpha_xu_neg), xpt.shape[1])
|
|
|
|
alpha_xu_pos = np.atleast_2d(
|
|
np.broadcast_to(xu, i_xu_pos.shape)[i_xu_pos] / xpt.T[i_xu_pos]
|
|
)
|
|
alpha_xu_pos = np.max(alpha_xu_pos, axis=1, initial=np.inf)
|
|
alpha_xu_pos = np.broadcast_to(np.atleast_1d(alpha_xu_pos), xpt.shape[1])
|
|
|
|
for k in range(xpt.shape[1]):
|
|
# Set alpha_tr to the step size for the trust-region constraint.
|
|
if s_norm[k] > TINY * delta:
|
|
alpha_tr = max(delta / s_norm[k], 0.0)
|
|
else:
|
|
# The current straight line is basically zero.
|
|
continue
|
|
|
|
alpha_bd_pos = max(min(alpha_xu_pos[k], alpha_xl_neg[k]), 0.0)
|
|
alpha_bd_neg = min(max(alpha_xl_pos[k], alpha_xu_neg[k]), 0.0)
|
|
|
|
# Set alpha_quad_pos and alpha_quad_neg to the step size to the extrema
|
|
# of the quadratic function along the positive and negative directions.
|
|
grad_step = grad @ xpt[:, k]
|
|
curv_step = curv(xpt[:, k])
|
|
if (
|
|
grad_step >= 0.0
|
|
and curv_step < -TINY * grad_step
|
|
or grad_step <= 0.0
|
|
and curv_step > -TINY * grad_step
|
|
):
|
|
alpha_quad_pos = max(-grad_step / curv_step, 0.0)
|
|
else:
|
|
alpha_quad_pos = np.inf
|
|
if (
|
|
grad_step >= 0.0
|
|
and curv_step > TINY * grad_step
|
|
or grad_step <= 0.0
|
|
and curv_step < TINY * grad_step
|
|
):
|
|
alpha_quad_neg = min(-grad_step / curv_step, 0.0)
|
|
else:
|
|
alpha_quad_neg = -np.inf
|
|
|
|
# Select the step that provides the largest value of the objective
|
|
# function if it improves the current best. The best positive step is
|
|
# either the one that reaches the constraints or the one that reaches
|
|
# the extremum of the objective function along the current direction
|
|
# (only possible if the resulting step is feasible). We test both, and
|
|
# we perform similar calculations along the negative step.
|
|
# N.B.: we select the largest possible step among all the ones that
|
|
# maximize the objective function. This is to avoid returning the zero
|
|
# step in some extreme cases.
|
|
alpha_pos = min(alpha_tr, alpha_bd_pos)
|
|
alpha_neg = max(-alpha_tr, alpha_bd_neg)
|
|
q_val_pos = (
|
|
const + alpha_pos * grad_step + 0.5 * alpha_pos**2.0 * curv_step
|
|
)
|
|
q_val_neg = (
|
|
const + alpha_neg * grad_step + 0.5 * alpha_neg**2.0 * curv_step
|
|
)
|
|
if alpha_quad_pos < alpha_pos:
|
|
q_val_quad_pos = (
|
|
const
|
|
+ alpha_quad_pos * grad_step
|
|
+ 0.5 * alpha_quad_pos**2.0 * curv_step
|
|
)
|
|
if abs(q_val_quad_pos) > abs(q_val_pos):
|
|
alpha_pos = alpha_quad_pos
|
|
q_val_pos = q_val_quad_pos
|
|
if alpha_quad_neg > alpha_neg:
|
|
q_val_quad_neg = (
|
|
const
|
|
+ alpha_quad_neg * grad_step
|
|
+ 0.5 * alpha_quad_neg**2.0 * curv_step
|
|
)
|
|
if abs(q_val_quad_neg) > abs(q_val_neg):
|
|
alpha_neg = alpha_quad_neg
|
|
q_val_neg = q_val_quad_neg
|
|
if abs(q_val_pos) >= abs(q_val_neg) and abs(q_val_pos) > abs(q_val):
|
|
step = np.clip(alpha_pos * xpt[:, k], xl, xu)
|
|
q_val = q_val_pos
|
|
elif abs(q_val_neg) > abs(q_val_pos) and abs(q_val_neg) > abs(q_val):
|
|
step = np.clip(alpha_neg * xpt[:, k], xl, xu)
|
|
q_val = q_val_neg
|
|
|
|
if debug:
|
|
assert np.all(xl <= step)
|
|
assert np.all(step <= xu)
|
|
assert np.linalg.norm(step) < 1.1 * delta
|
|
return step
|
|
|
|
|
|
def _cauchy_geom(const, grad, curv, xl, xu, delta, debug):
|
|
"""
|
|
Same as `bound_constrained_cauchy_step` without the absolute value.
|
|
"""
|
|
# Calculate the initial active set.
|
|
fixed_xl = (xl < 0.0) & (grad > 0.0)
|
|
fixed_xu = (xu > 0.0) & (grad < 0.0)
|
|
|
|
# Calculate the Cauchy step.
|
|
cauchy_step = np.zeros_like(grad)
|
|
cauchy_step[fixed_xl] = xl[fixed_xl]
|
|
cauchy_step[fixed_xu] = xu[fixed_xu]
|
|
if np.linalg.norm(cauchy_step) > delta:
|
|
working = fixed_xl | fixed_xu
|
|
while True:
|
|
# Calculate the Cauchy step for the directions in the working set.
|
|
g_norm = np.linalg.norm(grad[working])
|
|
delta_reduced = np.sqrt(
|
|
delta**2.0 - cauchy_step[~working] @ cauchy_step[~working]
|
|
)
|
|
if g_norm > TINY * abs(delta_reduced):
|
|
mu = max(delta_reduced / g_norm, 0.0)
|
|
else:
|
|
break
|
|
cauchy_step[working] = mu * grad[working]
|
|
|
|
# Update the working set.
|
|
fixed_xl = working & (cauchy_step < xl)
|
|
fixed_xu = working & (cauchy_step > xu)
|
|
if not np.any(fixed_xl) and not np.any(fixed_xu):
|
|
# Stop the calculations as the Cauchy step is now feasible.
|
|
break
|
|
cauchy_step[fixed_xl] = xl[fixed_xl]
|
|
cauchy_step[fixed_xu] = xu[fixed_xu]
|
|
working = working & ~(fixed_xl | fixed_xu)
|
|
|
|
# Calculate the step that maximizes the quadratic along the Cauchy step.
|
|
grad_step = grad @ cauchy_step
|
|
if grad_step >= 0.0:
|
|
# Set alpha_tr to the step size for the trust-region constraint.
|
|
s_norm = np.linalg.norm(cauchy_step)
|
|
if s_norm > TINY * delta:
|
|
alpha_tr = max(delta / s_norm, 0.0)
|
|
else:
|
|
# The Cauchy step is basically zero.
|
|
alpha_tr = 0.0
|
|
|
|
# Set alpha_quad to the step size for the maximization problem.
|
|
curv_step = curv(cauchy_step)
|
|
if curv_step < -TINY * grad_step:
|
|
alpha_quad = max(-grad_step / curv_step, 0.0)
|
|
else:
|
|
alpha_quad = np.inf
|
|
|
|
# Set alpha_bd to the step size for the bound constraints.
|
|
i_xl = (xl > -np.inf) & (cauchy_step < TINY * xl)
|
|
i_xu = (xu < np.inf) & (cauchy_step > TINY * xu)
|
|
alpha_xl = np.min(xl[i_xl] / cauchy_step[i_xl], initial=np.inf)
|
|
alpha_xu = np.min(xu[i_xu] / cauchy_step[i_xu], initial=np.inf)
|
|
alpha_bd = min(alpha_xl, alpha_xu)
|
|
|
|
# Calculate the solution and the corresponding function value.
|
|
alpha = min(alpha_tr, alpha_quad, alpha_bd)
|
|
step = np.clip(alpha * cauchy_step, xl, xu)
|
|
q_val = const + alpha * grad_step + 0.5 * alpha**2.0 * curv_step
|
|
else:
|
|
# This case is never reached in exact arithmetic. It prevents this
|
|
# function to return a step that decreases the objective function.
|
|
step = np.zeros_like(grad)
|
|
q_val = const
|
|
|
|
if debug:
|
|
assert np.all(xl <= step)
|
|
assert np.all(step <= xu)
|
|
assert np.linalg.norm(step) < 1.1 * delta
|
|
return step, q_val
|