team-10/env/Lib/site-packages/scipy/optimize/_cobyla_py.py
2025-08-02 07:34:44 +02:00

297 lines
11 KiB
Python

"""
Interface to Constrained Optimization By Linear Approximation
Functions
---------
.. autosummary::
:toctree: generated/
fmin_cobyla
"""
from inspect import signature
import numpy as np
from ._optimize import (OptimizeResult, _check_unknown_options,
_prepare_scalar_function)
from ._constraints import NonlinearConstraint
__all__ = ['fmin_cobyla']
def fmin_cobyla(func, x0, cons, args=(), consargs=None, rhobeg=1.0,
rhoend=1e-4, maxfun=1000, disp=None, catol=2e-4,
*, callback=None):
"""
Minimize a function using the Constrained Optimization By Linear
Approximation (COBYLA) method. This method uses the pure-python implementation
of the algorithm from PRIMA.
Parameters
----------
func : callable
Function to minimize. In the form func(x, \\*args).
x0 : ndarray
Initial guess.
cons : sequence
Constraint functions; must all be ``>=0`` (a single function
if only 1 constraint). Each function takes the parameters `x`
as its first argument, and it can return either a single number or
an array or list of numbers.
args : tuple, optional
Extra arguments to pass to function.
consargs : tuple, optional
Extra arguments to pass to constraint functions (default of None means
use same extra arguments as those passed to func).
Use ``()`` for no extra arguments.
rhobeg : float, optional
Reasonable initial changes to the variables.
rhoend : float, optional
Final accuracy in the optimization (not precisely guaranteed). This
is a lower bound on the size of the trust region.
disp : {0, 1, 2, 3}, optional
Controls the frequency of output; 0 implies no output.
maxfun : int, optional
Maximum number of function evaluations.
catol : float, optional
Absolute tolerance for constraint violations.
callback : callable, optional
Called after each iteration, as ``callback(x)``, where ``x`` is the
current parameter vector.
Returns
-------
x : ndarray
The argument that minimises `f`.
See also
--------
minimize: Interface to minimization algorithms for multivariate
functions. See the 'COBYLA' `method` in particular.
Notes
-----
This algorithm is based on linear approximations to the objective
function and each constraint. We briefly describe the algorithm.
Suppose the function is being minimized over k variables. At the
jth iteration the algorithm has k+1 points v_1, ..., v_(k+1),
an approximate solution x_j, and a radius RHO_j.
(i.e., linear plus a constant) approximations to the objective
function and constraint functions such that their function values
agree with the linear approximation on the k+1 points v_1,.., v_(k+1).
This gives a linear program to solve (where the linear approximations
of the constraint functions are constrained to be non-negative).
However, the linear approximations are likely only good
approximations near the current simplex, so the linear program is
given the further requirement that the solution, which
will become x_(j+1), must be within RHO_j from x_j. RHO_j only
decreases, never increases. The initial RHO_j is rhobeg and the
final RHO_j is rhoend. In this way COBYLA's iterations behave
like a trust region algorithm.
Additionally, the linear program may be inconsistent, or the
approximation may give poor improvement. For details about
how these issues are resolved, as well as how the points v_i are
updated, refer to the source code or the references below.
.. versionchanged:: 1.16.0
The original Powell implementation was replaced by a pure
Python version from the PRIMA package, with bug fixes and
improvements being made.
References
----------
Powell M.J.D. (1994), "A direct search optimization method that models
the objective and constraint functions by linear interpolation.", in
Advances in Optimization and Numerical Analysis, eds. S. Gomez and
J-P Hennart, Kluwer Academic (Dordrecht), pp. 51-67
Powell M.J.D. (1998), "Direct search algorithms for optimization
calculations", Acta Numerica 7, 287-336
Powell M.J.D. (2007), "A view of algorithms for optimization without
derivatives", Cambridge University Technical Report DAMTP 2007/NA03
Zhang Z. (2023), "PRIMA: Reference Implementation for Powell's Methods with
Modernization and Amelioration", https://www.libprima.net,
:doi:`10.5281/zenodo.8052654`
Examples
--------
Minimize the objective function f(x,y) = x*y subject
to the constraints x**2 + y**2 < 1 and y > 0::
>>> def objective(x):
... return x[0]*x[1]
...
>>> def constr1(x):
... return 1 - (x[0]**2 + x[1]**2)
...
>>> def constr2(x):
... return x[1]
...
>>> from scipy.optimize import fmin_cobyla
>>> fmin_cobyla(objective, [0.0, 0.1], [constr1, constr2], rhoend=1e-7)
array([-0.70710685, 0.70710671])
The exact solution is (-sqrt(2)/2, sqrt(2)/2).
"""
err = "cons must be a sequence of callable functions or a single"\
" callable function."
try:
len(cons)
except TypeError as e:
if callable(cons):
cons = [cons]
else:
raise TypeError(err) from e
else:
for thisfunc in cons:
if not callable(thisfunc):
raise TypeError(err)
if consargs is None:
consargs = args
# build constraints
nlcs = []
for con in cons:
# Use default argument, otherwise the last `con` is captured by all wrapped_con
def wrapped_con(x, confunc=con):
return confunc(x, *consargs)
nlcs.append(NonlinearConstraint(wrapped_con, 0, np.inf))
# options
opts = {'rhobeg': rhobeg,
'tol': rhoend,
'disp': disp,
'maxiter': maxfun,
'catol': catol,
'callback': callback}
sol = _minimize_cobyla(func, x0, args, constraints=nlcs,
**opts)
if disp and not sol['success']:
print(f"COBYLA failed to find a solution: {sol.message}")
return sol['x']
def _minimize_cobyla(fun, x0, args=(), constraints=(),
rhobeg=1.0, tol=1e-4, maxiter=1000,
disp=0, catol=None, f_target=-np.inf,
callback=None, bounds=None, **unknown_options):
"""
Minimize a scalar function of one or more variables using the
Constrained Optimization BY Linear Approximation (COBYLA) algorithm.
This method uses the pure-python implementation of the algorithm from PRIMA.
Options
-------
rhobeg : float
Reasonable initial changes to the variables.
tol : float
Final accuracy in the optimization (not precisely guaranteed).
This is a lower bound on the size of the trust region.
disp : int
Controls the frequency of output:
0. (default) There will be no printing
1. A message will be printed to the screen at the end of iteration, showing
the best vector of variables found and its objective function value
2. in addition to 1, each new value of RHO is printed to the screen,
with the best vector of variables so far and its objective function
value.
3. in addition to 2, each function evaluation with its variables will
be printed to the screen.
maxiter : int
Maximum number of function evaluations.
catol : float
Tolerance (absolute) for constraint violations
f_target : float
Stop if the objective function is less than `f_target`.
.. versionchanged:: 1.16.0
The original Powell implementation was replaced by a pure
Python version from the PRIMA package, with bug fixes and
improvements being made.
References
----------
Zhang Z. (2023), "PRIMA: Reference Implementation for Powell's Methods with
Modernization and Amelioration", https://www.libprima.net,
:doi:`10.5281/zenodo.8052654`
"""
from .._lib.pyprima import minimize
from .._lib.pyprima.common.infos import SMALL_TR_RADIUS, FTARGET_ACHIEVED
from .._lib.pyprima.common.message import get_info_string
_check_unknown_options(unknown_options)
rhoend = tol
iprint = disp if disp is not None else 0
if iprint != 0 and iprint != 1 and iprint != 2 and iprint != 3:
raise ValueError(f'disp argument to minimize must be 0, 1, 2, or 3,\
received {iprint}')
# create the ScalarFunction, cobyla doesn't require derivative function
def _jac(x, *args):
return None
sf = _prepare_scalar_function(fun, x0, args=args, jac=_jac)
if callback is not None:
sig = signature(callback)
if set(sig.parameters) == {"intermediate_result"}:
def wrapped_callback_intermediate(x, f, nf, tr, cstrv, nlconstrlist):
intermediate_result = OptimizeResult(x=np.copy(x), fun=f, nfev=nf,
nit=tr, maxcv=cstrv)
callback(intermediate_result=intermediate_result)
else:
def wrapped_callback_intermediate(x, f, nf, tr, cstrv, nlconstrlist):
callback(np.copy(x))
def wrapped_callback(x, f, nf, tr, cstrv, nlconstrlist):
try:
wrapped_callback_intermediate(x, f, nf, tr, cstrv, nlconstrlist)
return False
except StopIteration:
return True
else:
wrapped_callback = None
ctol = catol if catol is not None else np.sqrt(np.finfo(float).eps)
options = {
'rhobeg': rhobeg,
'rhoend': rhoend,
'maxfev': maxiter,
'iprint': iprint,
'ctol': ctol,
'ftarget': f_target,
}
result = minimize(sf.fun, x0, method='cobyla', bounds=bounds,
constraints=constraints, callback=wrapped_callback,
options=options)
if result.cstrv > ctol:
success = False
message = ('Did not converge to a solution satisfying the constraints. See '
'`maxcv` for the magnitude of the violation.')
else:
success = result.info == SMALL_TR_RADIUS or result.info == FTARGET_ACHIEVED
message = get_info_string('COBYLA', result.info)
return OptimizeResult(x=result.x,
status=result.info,
success=success,
message=message,
nfev=result.nf,
fun=result.f,
maxcv=result.cstrv)