team-10/env/Lib/site-packages/scipy/optimize/_differentiable_functions.py
2025-08-02 07:34:44 +02:00

835 lines
29 KiB
Python

from collections import namedtuple
import numpy as np
import scipy.sparse as sps
from ._numdiff import approx_derivative, group_columns
from ._hessian_update_strategy import HessianUpdateStrategy
from scipy.sparse.linalg import LinearOperator
from scipy._lib._array_api import array_namespace, xp_copy
from scipy._lib import array_api_extra as xpx
from scipy._lib._util import _ScalarFunctionWrapper
FD_METHODS = ('2-point', '3-point', 'cs')
class _ScalarGradWrapper:
"""
Wrapper class for gradient calculation
"""
def __init__(
self,
grad,
fun=None,
args=None,
finite_diff_options=None,
):
self.fun = fun
self.grad = grad
self.args = [] if args is None else args
self.finite_diff_options = finite_diff_options
self.ngev = 0
# number of function evaluations consumed by finite difference
self.nfev = 0
def __call__(self, x, f0=None, **kwds):
# Send a copy because the user may overwrite it.
# The user of this class might want `x` to remain unchanged.
if callable(self.grad):
g = np.atleast_1d(self.grad(np.copy(x), *self.args))
elif self.grad in FD_METHODS:
g, dct = approx_derivative(
self.fun,
x,
f0=f0,
**self.finite_diff_options,
)
self.nfev += dct['nfev']
self.ngev += 1
return g
class _ScalarHessWrapper:
"""
Wrapper class for hess calculation via finite differences
"""
def __init__(
self,
hess,
x0=None,
grad=None,
args=None,
finite_diff_options=None,
):
self.hess = hess
self.grad = grad
self.args = [] if args is None else args
self.finite_diff_options = finite_diff_options
# keep track of any finite difference function evaluations for grad
self.ngev = 0
self.nhev = 0
self.H = None
self._hess_func = None
if callable(hess):
self.H = hess(np.copy(x0), *args)
self.nhev += 1
if sps.issparse(self.H):
self._hess_func = self._sparse_callable
self.H = sps.csr_array(self.H)
elif isinstance(self.H, LinearOperator):
self._hess_func = self._linearoperator_callable
else:
# dense
self._hess_func = self._dense_callable
self.H = np.atleast_2d(np.asarray(self.H))
elif hess in FD_METHODS:
self._hess_func = self._fd_hess
def __call__(self, x, f0=None, **kwds):
return self._hess_func(np.copy(x), f0=f0)
def _fd_hess(self, x, f0=None, **kwds):
self.H, dct = approx_derivative(
self.grad, x, f0=f0, **self.finite_diff_options
)
self.ngev += dct["nfev"]
return self.H
def _sparse_callable(self, x, **kwds):
self.nhev += 1
self.H = sps.csr_array(self.hess(x, *self.args))
return self.H
def _dense_callable(self, x, **kwds):
self.nhev += 1
self.H = np.atleast_2d(
np.asarray(self.hess(x, *self.args))
)
return self.H
def _linearoperator_callable(self, x, **kwds):
self.nhev += 1
self.H = self.hess(x, *self.args)
return self.H
class ScalarFunction:
"""Scalar function and its derivatives.
This class defines a scalar function F: R^n->R and methods for
computing or approximating its first and second derivatives.
Parameters
----------
fun : callable
evaluates the scalar function. Must be of the form ``fun(x, *args)``,
where ``x`` is the argument in the form of a 1-D array and ``args`` is
a tuple of any additional fixed parameters needed to completely specify
the function. Should return a scalar.
x0 : array-like
Provides an initial set of variables for evaluating fun. Array of real
elements of size (n,), where 'n' is the number of independent
variables.
args : tuple, optional
Any additional fixed parameters needed to completely specify the scalar
function.
grad : {callable, '2-point', '3-point', 'cs'}
Method for computing the gradient vector.
If it is a callable, it should be a function that returns the gradient
vector:
``grad(x, *args) -> array_like, shape (n,)``
where ``x`` is an array with shape (n,) and ``args`` is a tuple with
the fixed parameters.
Alternatively, the keywords {'2-point', '3-point', 'cs'} can be used
to select a finite difference scheme for numerical estimation of the
gradient with a relative step size. These finite difference schemes
obey any specified `bounds`.
hess : {callable, '2-point', '3-point', 'cs', HessianUpdateStrategy}
Method for computing the Hessian matrix. If it is callable, it should
return the Hessian matrix:
``hess(x, *args) -> {LinearOperator, spmatrix, array}, (n, n)``
where x is a (n,) ndarray and `args` is a tuple with the fixed
parameters. Alternatively, the keywords {'2-point', '3-point', 'cs'}
select a finite difference scheme for numerical estimation. Or, objects
implementing `HessianUpdateStrategy` interface can be used to
approximate the Hessian.
Whenever the gradient is estimated via finite-differences, the Hessian
cannot be estimated with options {'2-point', '3-point', 'cs'} and needs
to be estimated using one of the quasi-Newton strategies.
finite_diff_rel_step : None or array_like
Relative step size to use. The absolute step size is computed as
``h = finite_diff_rel_step * sign(x0) * max(1, abs(x0))``, possibly
adjusted to fit into the bounds. For ``method='3-point'`` the sign
of `h` is ignored. If None then finite_diff_rel_step is selected
automatically,
finite_diff_bounds : tuple of array_like
Lower and upper bounds on independent variables. Defaults to no bounds,
(-np.inf, np.inf). Each bound must match the size of `x0` or be a
scalar, in the latter case the bound will be the same for all
variables. Use it to limit the range of function evaluation.
epsilon : None or array_like, optional
Absolute step size to use, possibly adjusted to fit into the bounds.
For ``method='3-point'`` the sign of `epsilon` is ignored. By default
relative steps are used, only if ``epsilon is not None`` are absolute
steps used.
workers : map-like callable, optional
A map-like callable, such as `multiprocessing.Pool.map` for evaluating
any numerical differentiation in parallel.
This evaluation is carried out as ``workers(fun, iterable)``, or
``workers(grad, iterable)``, depending on what is being numerically
differentiated.
Alternatively, if `workers` is an int the task is subdivided into `workers`
sections and the function evaluated in parallel
(uses `multiprocessing.Pool <multiprocessing>`).
Supply -1 to use all available CPU cores.
It is recommended that a map-like be used instead of int, as repeated
calls to `approx_derivative` will incur large overhead from setting up
new processes.
.. versionadded:: 1.16.0
Notes
-----
This class implements a memoization logic. There are methods `fun`,
`grad`, hess` and corresponding attributes `f`, `g` and `H`. The following
things should be considered:
1. Use only public methods `fun`, `grad` and `hess`.
2. After one of the methods is called, the corresponding attribute
will be set. However, a subsequent call with a different argument
of *any* of the methods may overwrite the attribute.
"""
def __init__(self, fun, x0, args, grad, hess, finite_diff_rel_step=None,
finite_diff_bounds=(-np.inf, np.inf), epsilon=None, workers=None):
if not callable(grad) and grad not in FD_METHODS:
raise ValueError(
f"`grad` must be either callable or one of {FD_METHODS}."
)
if not (callable(hess) or hess in FD_METHODS
or isinstance(hess, HessianUpdateStrategy)):
raise ValueError(
f"`hess` must be either callable, HessianUpdateStrategy"
f" or one of {FD_METHODS}."
)
if grad in FD_METHODS and hess in FD_METHODS:
raise ValueError("Whenever the gradient is estimated via "
"finite-differences, we require the Hessian "
"to be estimated using one of the "
"quasi-Newton strategies.")
self.xp = xp = array_namespace(x0)
_x = xpx.atleast_nd(xp.asarray(x0), ndim=1, xp=xp)
_dtype = xp.float64
if xp.isdtype(_x.dtype, "real floating"):
_dtype = _x.dtype
# original arguments
self._wrapped_fun = _ScalarFunctionWrapper(fun, args)
self._orig_fun = fun
self._orig_grad = grad
self._orig_hess = hess
self._args = args
# promotes to floating
self.x = xp.astype(_x, _dtype)
self.x_dtype = _dtype
self.n = self.x.size
self.f_updated = False
self.g_updated = False
self.H_updated = False
self._lowest_x = None
self._lowest_f = np.inf
# normalize workers
workers = workers or map
finite_diff_options = {}
if grad in FD_METHODS:
finite_diff_options["method"] = grad
finite_diff_options["rel_step"] = finite_diff_rel_step
finite_diff_options["abs_step"] = epsilon
finite_diff_options["bounds"] = finite_diff_bounds
finite_diff_options["workers"] = workers
finite_diff_options["full_output"] = True
if hess in FD_METHODS:
finite_diff_options["method"] = hess
finite_diff_options["rel_step"] = finite_diff_rel_step
finite_diff_options["abs_step"] = epsilon
finite_diff_options["as_linear_operator"] = True
finite_diff_options["workers"] = workers
finite_diff_options["full_output"] = True
# Initial function evaluation
self._nfev = 0
self._update_fun()
# Initial gradient evaluation
self._wrapped_grad = _ScalarGradWrapper(
grad,
fun=self._wrapped_fun,
args=args,
finite_diff_options=finite_diff_options,
)
self._update_grad()
# Hessian evaluation
if isinstance(hess, HessianUpdateStrategy):
self.H = hess
self.H.initialize(self.n, 'hess')
self.H_updated = True
self.x_prev = None
self.g_prev = None
_FakeCounter = namedtuple('_FakeCounter', ['ngev', 'nhev'])
self._wrapped_hess = _FakeCounter(ngev=0, nhev=0)
else:
if callable(hess):
self._wrapped_hess = _ScalarHessWrapper(
hess,
x0=x0,
args=args,
finite_diff_options=finite_diff_options
)
self.H = self._wrapped_hess.H
self.H_updated = True
elif hess in FD_METHODS:
self._wrapped_hess = _ScalarHessWrapper(
hess,
x0=x0,
args=args,
grad=self._wrapped_grad,
finite_diff_options=finite_diff_options
)
self._update_grad()
self.H = self._wrapped_hess(self.x, f0=self.g)
self.H_updated = True
@property
def nfev(self):
return self._nfev + self._wrapped_grad.nfev
@property
def ngev(self):
return self._wrapped_grad.ngev #+ self._wrapped_hess.ngev
@property
def nhev(self):
return self._wrapped_hess.nhev
def _update_x(self, x):
if isinstance(self._orig_hess, HessianUpdateStrategy):
self._update_grad()
self.x_prev = self.x
self.g_prev = self.g
# ensure that self.x is a copy of x. Don't store a reference
# otherwise the memoization doesn't work properly.
_x = xpx.atleast_nd(self.xp.asarray(x), ndim=1, xp=self.xp)
self.x = self.xp.astype(_x, self.x_dtype)
self.f_updated = False
self.g_updated = False
self.H_updated = False
self._update_hess()
else:
# ensure that self.x is a copy of x. Don't store a reference
# otherwise the memoization doesn't work properly.
_x = xpx.atleast_nd(self.xp.asarray(x), ndim=1, xp=self.xp)
self.x = self.xp.astype(_x, self.x_dtype)
self.f_updated = False
self.g_updated = False
self.H_updated = False
def _update_fun(self):
if not self.f_updated:
fx = self._wrapped_fun(self.x)
self._nfev += 1
if fx < self._lowest_f:
self._lowest_x = self.x
self._lowest_f = fx
self.f = fx
self.f_updated = True
def _update_grad(self):
if not self.g_updated:
if self._orig_grad in FD_METHODS:
self._update_fun()
self.g = self._wrapped_grad(self.x, f0=self.f)
self.g_updated = True
def _update_hess(self):
if not self.H_updated:
if self._orig_hess in FD_METHODS:
self._update_grad()
self.H = self._wrapped_hess(self.x, f0=self.g)
elif isinstance(self._orig_hess, HessianUpdateStrategy):
self._update_grad()
self.H.update(self.x - self.x_prev, self.g - self.g_prev)
else: # should be callable(hess)
self.H = self._wrapped_hess(self.x)
self.H_updated = True
def fun(self, x):
if not np.array_equal(x, self.x):
self._update_x(x)
self._update_fun()
return self.f
def grad(self, x):
if not np.array_equal(x, self.x):
self._update_x(x)
self._update_grad()
return self.g
def hess(self, x):
if not np.array_equal(x, self.x):
self._update_x(x)
self._update_hess()
return self.H
def fun_and_grad(self, x):
if not np.array_equal(x, self.x):
self._update_x(x)
self._update_fun()
self._update_grad()
return self.f, self.g
class _VectorFunWrapper:
def __init__(self, fun):
self.fun = fun
self.nfev = 0
def __call__(self, x):
self.nfev += 1
return np.atleast_1d(self.fun(x))
class _VectorJacWrapper:
"""
Wrapper class for Jacobian calculation
"""
def __init__(
self,
jac,
fun=None,
finite_diff_options=None,
sparse_jacobian=None
):
self.fun = fun
self.jac = jac
self.finite_diff_options = finite_diff_options
self.sparse_jacobian = sparse_jacobian
self.njev = 0
# number of function evaluations consumed by finite difference
self.nfev = 0
def __call__(self, x, f0=None, **kwds):
# Send a copy because the user may overwrite it.
# The user of this class might want `x` to remain unchanged.
if callable(self.jac):
J = self.jac(x)
self.njev += 1
elif self.jac in FD_METHODS:
J, dct = approx_derivative(
self.fun,
x,
f0=f0,
**self.finite_diff_options,
)
self.nfev += dct['nfev']
if self.sparse_jacobian:
return sps.csr_array(J)
elif sps.issparse(J):
return J.toarray()
elif isinstance(J, LinearOperator):
return J
else:
return np.atleast_2d(J)
class _VectorHessWrapper:
"""
Wrapper class for Jacobian calculation
"""
def __init__(
self,
hess,
jac=None,
finite_diff_options=None,
):
self.jac = jac
self.hess = hess
self.finite_diff_options = finite_diff_options
self.nhev = 0
# number of jac evaluations consumed by finite difference
self.njev = 0
def __call__(self, x, v, J0=None, **kwds):
# Send a copy because the user may overwrite it.
# The user of this class might want `x` to remain unchanged.
if callable(self.hess):
self.nhev += 1
return self._callable_hess(x, v)
elif self.hess in FD_METHODS:
return self._fd_hess(x, v, J0=J0)
def _fd_hess(self, x, v, J0=None):
if J0 is None:
J0 = self.jac(x)
self.njev += 1
# H will be a LinearOperator
H = approx_derivative(self.jac_dot_v, x,
f0=J0.T.dot(v),
args=(v,),
**self.finite_diff_options)
return H
def jac_dot_v(self, x, v):
self.njev += 1
return self.jac(x).T.dot(v)
def _callable_hess(self, x, v):
H = self.hess(x, v)
if sps.issparse(H):
return sps.csr_array(H)
elif isinstance(H, LinearOperator):
return H
else:
return np.atleast_2d(np.asarray(H))
class VectorFunction:
"""Vector function and its derivatives.
This class defines a vector function F: R^n->R^m and methods for
computing or approximating its first and second derivatives.
Notes
-----
This class implements a memoization logic. There are methods `fun`,
`jac`, hess` and corresponding attributes `f`, `J` and `H`. The following
things should be considered:
1. Use only public methods `fun`, `jac` and `hess`.
2. After one of the methods is called, the corresponding attribute
will be set. However, a subsequent call with a different argument
of *any* of the methods may overwrite the attribute.
"""
def __init__(self, fun, x0, jac, hess,
finite_diff_rel_step=None, finite_diff_jac_sparsity=None,
finite_diff_bounds=(-np.inf, np.inf), sparse_jacobian=None,
workers=None):
if not callable(jac) and jac not in FD_METHODS:
raise ValueError(f"`jac` must be either callable or one of {FD_METHODS}.")
if not (callable(hess) or hess in FD_METHODS
or isinstance(hess, HessianUpdateStrategy)):
raise ValueError("`hess` must be either callable,"
f"HessianUpdateStrategy or one of {FD_METHODS}.")
if jac in FD_METHODS and hess in FD_METHODS:
raise ValueError("Whenever the Jacobian is estimated via "
"finite-differences, we require the Hessian to "
"be estimated using one of the quasi-Newton "
"strategies.")
self.xp = xp = array_namespace(x0)
_x = xpx.atleast_nd(xp.asarray(x0), ndim=1, xp=xp)
_dtype = xp.float64
if xp.isdtype(_x.dtype, "real floating"):
_dtype = _x.dtype
# store original functions
self._orig_fun = fun
self._orig_jac = jac
self._orig_hess = hess
# promotes to floating, ensures that it's a copy
self.x = xp.astype(_x, _dtype)
self.x_dtype = _dtype
self.n = self.x.size
self._nfev = 0
self._njev = 0
self._nhev = 0
self.f_updated = False
self.J_updated = False
self.H_updated = False
# normalize workers
workers = workers or map
finite_diff_options = {}
if jac in FD_METHODS:
finite_diff_options["method"] = jac
finite_diff_options["rel_step"] = finite_diff_rel_step
if finite_diff_jac_sparsity is not None:
sparsity_groups = group_columns(finite_diff_jac_sparsity)
finite_diff_options["sparsity"] = (finite_diff_jac_sparsity,
sparsity_groups)
finite_diff_options["bounds"] = finite_diff_bounds
finite_diff_options["workers"] = workers
finite_diff_options["full_output"] = True
self.x_diff = np.copy(self.x)
if hess in FD_METHODS:
finite_diff_options["method"] = hess
finite_diff_options["rel_step"] = finite_diff_rel_step
finite_diff_options["as_linear_operator"] = True
# workers is not useful for evaluation of the LinearOperator
# produced by approx_derivative. Only two/three function
# evaluations are used, and the LinearOperator may persist
# outside the scope that workers is valid in.
self.x_diff = np.copy(self.x)
if jac in FD_METHODS and hess in FD_METHODS:
raise ValueError("Whenever the Jacobian is estimated via "
"finite-differences, we require the Hessian to "
"be estimated using one of the quasi-Newton "
"strategies.")
self.fun_wrapped = _VectorFunWrapper(fun)
self._update_fun()
self.v = np.zeros_like(self.f)
self.m = self.v.size
# Initial Jacobian Evaluation
if callable(jac):
self.J = jac(xp_copy(self.x))
self.J_updated = True
self._njev += 1
elif jac in FD_METHODS:
self.J, dct = approx_derivative(
self.fun_wrapped, self.x, f0=self.f, **finite_diff_options
)
self.J_updated = True
self._nfev += dct['nfev']
self.sparse_jacobian = False
if (sparse_jacobian or
sparse_jacobian is None and sps.issparse(self.J)):
# something truthy was specified for sparse_jacobian,
# or it turns out that the Jacobian was sparse.
self.J = sps.csr_array(self.J)
self.sparse_jacobian = True
elif sps.issparse(self.J):
self.J = self.J.toarray()
elif isinstance(self.J, LinearOperator):
pass
else:
self.J = np.atleast_2d(self.J)
self.jac_wrapped = _VectorJacWrapper(
jac,
fun=self.fun_wrapped,
finite_diff_options=finite_diff_options,
sparse_jacobian=self.sparse_jacobian
)
self.hess_wrapped = _VectorHessWrapper(
hess, jac=self.jac_wrapped, finite_diff_options=finite_diff_options
)
# Define Hessian
if callable(hess) or hess in FD_METHODS:
self.H = self.hess_wrapped(xp_copy(self.x), self.v, J0=self.J)
self.H_updated = True
if callable(hess):
self._nhev += 1
elif isinstance(hess, HessianUpdateStrategy):
self.H = hess
self.H.initialize(self.n, 'hess')
self.H_updated = True
self.x_prev = None
self.J_prev = None
@property
def nfev(self):
return self._nfev + self.jac_wrapped.nfev
@property
def njev(self):
return self._njev + self.hess_wrapped.njev
@property
def nhev(self):
return self._nhev
def _update_v(self, v):
if not np.array_equal(v, self.v):
self.v = v
self.H_updated = False
def _update_x(self, x):
if not np.array_equal(x, self.x):
if isinstance(self._orig_hess, HessianUpdateStrategy):
self._update_jac()
self.x_prev = self.x
self.J_prev = self.J
_x = xpx.atleast_nd(self.xp.asarray(x), ndim=1, xp=self.xp)
self.x = self.xp.astype(_x, self.x_dtype)
self.f_updated = False
self.J_updated = False
self.H_updated = False
self._update_hess()
else:
_x = xpx.atleast_nd(self.xp.asarray(x), ndim=1, xp=self.xp)
self.x = self.xp.astype(_x, self.x_dtype)
self.f_updated = False
self.J_updated = False
self.H_updated = False
def _update_fun(self):
if not self.f_updated:
self.f = self.fun_wrapped(xp_copy(self.x))
self._nfev += 1
self.f_updated = True
def _update_jac(self):
if not self.J_updated:
if self._orig_jac in FD_METHODS:
# need to update fun to get f0
self._update_fun()
else:
self._njev += 1
self.J = self.jac_wrapped(xp_copy(self.x), f0=self.f)
self.J_updated = True
def _update_hess(self):
if not self.H_updated:
if callable(self._orig_hess):
self.H = self.hess_wrapped(xp_copy(self.x), self.v)
self._nhev += 1
elif self._orig_hess in FD_METHODS:
self._update_jac()
self.H = self.hess_wrapped(xp_copy(self.x), self.v, J0=self.J)
elif isinstance(self._orig_hess, HessianUpdateStrategy):
self._update_jac()
# When v is updated before x was updated, then x_prev and
# J_prev are None and we need this check.
if self.x_prev is not None and self.J_prev is not None:
delta_x = self.x - self.x_prev
delta_g = self.J.T.dot(self.v) - self.J_prev.T.dot(self.v)
self.H.update(delta_x, delta_g)
self.H_updated = True
def fun(self, x):
self._update_x(x)
self._update_fun()
# returns a copy so that downstream can't overwrite the
# internal attribute
return xp_copy(self.f)
def jac(self, x):
self._update_x(x)
self._update_jac()
if hasattr(self.J, "astype"):
# returns a copy so that downstream can't overwrite the
# internal attribute. But one can't copy a LinearOperator
return self.J.astype(self.J.dtype)
return self.J
def hess(self, x, v):
# v should be updated before x.
self._update_v(v)
self._update_x(x)
self._update_hess()
if hasattr(self.H, "astype"):
# returns a copy so that downstream can't overwrite the
# internal attribute. But one can't copy non-arrays
return self.H.astype(self.H.dtype)
return self.H
class LinearVectorFunction:
"""Linear vector function and its derivatives.
Defines a linear function F = A x, where x is N-D vector and
A is m-by-n matrix. The Jacobian is constant and equals to A. The Hessian
is identically zero and it is returned as a csr matrix.
"""
def __init__(self, A, x0, sparse_jacobian):
if sparse_jacobian or sparse_jacobian is None and sps.issparse(A):
self.J = sps.csr_array(A)
self.sparse_jacobian = True
elif sps.issparse(A):
self.J = A.toarray()
self.sparse_jacobian = False
else:
# np.asarray makes sure A is ndarray and not matrix
self.J = np.atleast_2d(np.asarray(A))
self.sparse_jacobian = False
self.m, self.n = self.J.shape
self.xp = xp = array_namespace(x0)
_x = xpx.atleast_nd(xp.asarray(x0), ndim=1, xp=xp)
_dtype = xp.float64
if xp.isdtype(_x.dtype, "real floating"):
_dtype = _x.dtype
# promotes to floating
self.x = xp.astype(_x, _dtype)
self.x_dtype = _dtype
self.f = self.J.dot(self.x)
self.f_updated = True
self.v = np.zeros(self.m, dtype=float)
self.H = sps.csr_array((self.n, self.n))
def _update_x(self, x):
if not np.array_equal(x, self.x):
_x = xpx.atleast_nd(self.xp.asarray(x), ndim=1, xp=self.xp)
self.x = self.xp.astype(_x, self.x_dtype)
self.f_updated = False
def fun(self, x):
self._update_x(x)
if not self.f_updated:
self.f = self.J.dot(x)
self.f_updated = True
return self.f
def jac(self, x):
self._update_x(x)
return self.J
def hess(self, x, v):
self._update_x(x)
self.v = v
return self.H
class IdentityVectorFunction(LinearVectorFunction):
"""Identity vector function and its derivatives.
The Jacobian is the identity matrix, returned as a dense array when
`sparse_jacobian=False` and as a csr matrix otherwise. The Hessian is
identically zero and it is returned as a csr matrix.
"""
def __init__(self, x0, sparse_jacobian):
n = len(x0)
if sparse_jacobian or sparse_jacobian is None:
A = sps.eye_array(n, format='csr')
sparse_jacobian = True
else:
A = np.eye(n)
sparse_jacobian = False
super().__init__(A, x0, sparse_jacobian)