team-10/env/Lib/site-packages/scipy/optimize/tests/test_cobyla.py
2025-08-02 07:34:44 +02:00

195 lines
6.7 KiB
Python

import math
import numpy as np
from numpy.testing import assert_allclose, assert_array_almost_equal
from scipy.optimize import (
fmin_cobyla, minimize, Bounds, NonlinearConstraint, LinearConstraint,
OptimizeResult
)
class TestCobyla:
def setup_method(self):
# The algorithm is very fragile on 32 bit, so unfortunately we need to start
# very near the solution in order for the test to pass.
self.x0 = [np.sqrt(25 - (2.0/3)**2), 2.0/3 + 1e-4]
self.solution = [math.sqrt(25 - (2.0/3)**2), 2.0/3]
self.opts = {'disp': 0, 'rhobeg': 1, 'tol': 1e-6,
'maxiter': 100}
def fun(self, x):
return x[0]**2 + abs(x[1])**3
def con1(self, x):
return x[0]**2 + x[1]**2 - 25
def con2(self, x):
return -self.con1(x)
def test_simple(self):
# use disp=True as smoke test for gh-8118
x = fmin_cobyla(self.fun, self.x0, [self.con1, self.con2], rhobeg=1,
rhoend=1e-5, maxfun=100, disp=1)
assert_allclose(x, self.solution, atol=1e-4)
def test_minimize_simple(self):
class Callback:
def __init__(self):
self.n_calls = 0
self.last_x = None
def __call__(self, x):
self.n_calls += 1
self.last_x = x
class CallbackNewSyntax:
def __init__(self):
self.n_calls = 0
def __call__(self, intermediate_result):
assert isinstance(intermediate_result, OptimizeResult)
self.n_calls += 1
callback = Callback()
callback_new_syntax = CallbackNewSyntax()
# Minimize with method='COBYLA'
cons = (NonlinearConstraint(self.con1, 0, np.inf),
{'type': 'ineq', 'fun': self.con2})
sol = minimize(self.fun, self.x0, method='cobyla', constraints=cons,
callback=callback, options=self.opts)
sol_new = minimize(self.fun, self.x0, method='cobyla', constraints=cons,
callback=callback_new_syntax, options=self.opts)
assert_allclose(sol.x, self.solution, atol=1e-4)
assert sol.success, sol.message
assert sol.maxcv < 1e-5, sol
assert sol.nfev < 70, sol
assert sol.fun < self.fun(self.solution) + 1e-3, sol
assert_array_almost_equal(
sol.x,
callback.last_x,
decimal=5,
err_msg="Last design vector sent to the callback is not equal to"
" returned value.",
)
assert sol_new.success, sol_new.message
assert sol.fun == sol_new.fun
assert sol.maxcv == sol_new.maxcv
assert sol.nfev == sol_new.nfev
assert callback.n_calls == callback_new_syntax.n_calls, \
"Callback is not called the same amount of times for old and new syntax."
def test_minimize_constraint_violation(self):
# We set up conflicting constraints so that the algorithm will be
# guaranteed to end up with maxcv > 0.
cons = ({'type': 'ineq', 'fun': lambda x: 4 - x},
{'type': 'ineq', 'fun': lambda x: x - 5})
sol = minimize(lambda x: x, [0], method='cobyla', constraints=cons,
options={'catol': 0.6})
assert sol.maxcv > 0.1
assert sol.success
sol = minimize(lambda x: x, [0], method='cobyla', constraints=cons,
options={'catol': 0.4})
assert sol.maxcv > 0.1
assert not sol.success
def test_f_target(self):
f_target = 250
sol = minimize(lambda x: x**2, [500], method='cobyla',
options={'f_target': f_target})
assert sol.status == 1
assert sol.success
assert sol.fun <= f_target
def test_minimize_linear_constraints(self):
constraints = LinearConstraint([1.0, 1.0], 1.0, 1.0)
sol = minimize(
self.fun,
self.x0,
method='cobyla',
constraints=constraints,
options=self.opts,
)
solution = [(4 - np.sqrt(7)) / 3, (np.sqrt(7) - 1) / 3]
assert_allclose(sol.x, solution, atol=1e-4)
assert sol.success, sol.message
assert sol.maxcv < 1e-8, sol
assert sol.nfev <= 100, sol
assert sol.fun < self.fun(solution) + 1e-3, sol
def test_vector_constraints():
# test that fmin_cobyla and minimize can take a combination
# of constraints, some returning a number and others an array
def fun(x):
return (x[0] - 1)**2 + (x[1] - 2.5)**2
def fmin(x):
return fun(x) - 1
def cons1(x):
a = np.array([[1, -2, 2], [-1, -2, 6], [-1, 2, 2]])
return np.array([a[i, 0] * x[0] + a[i, 1] * x[1] +
a[i, 2] for i in range(len(a))])
def cons2(x):
return x # identity, acts as bounds x > 0
x0 = np.array([2, 0])
cons_list = [fun, cons1, cons2]
xsol = [1.4, 1.7]
fsol = 0.8
# testing fmin_cobyla
sol = fmin_cobyla(fun, x0, cons_list, rhoend=1e-5)
assert_allclose(sol, xsol, atol=1e-4)
sol = fmin_cobyla(fun, x0, fmin, rhoend=1e-5)
assert_allclose(fun(sol), 1, atol=1e-4)
# testing minimize
constraints = [{'type': 'ineq', 'fun': cons} for cons in cons_list]
sol = minimize(fun, x0, constraints=constraints, tol=1e-5)
assert_allclose(sol.x, xsol, atol=1e-4)
assert sol.success, sol.message
assert_allclose(sol.fun, fsol, atol=1e-4)
constraints = {'type': 'ineq', 'fun': fmin}
sol = minimize(fun, x0, constraints=constraints, tol=1e-5)
assert_allclose(sol.fun, 1, atol=1e-4)
class TestBounds:
# Test cobyla support for bounds (only when used via `minimize`)
# Invalid bounds is tested in
# test_optimize.TestOptimizeSimple.test_minimize_invalid_bounds
def test_basic(self):
def f(x):
return np.sum(x**2)
lb = [-1, None, 1, None, -0.5]
ub = [-0.5, -0.5, None, None, -0.5]
bounds = [(a, b) for a, b in zip(lb, ub)]
# these are converted to Bounds internally
res = minimize(f, x0=[1, 2, 3, 4, 5], method='cobyla', bounds=bounds)
ref = [-0.5, -0.5, 1, 0, -0.5]
assert res.success
assert_allclose(res.x, ref, atol=1e-3)
def test_unbounded(self):
def f(x):
return np.sum(x**2)
bounds = Bounds([-np.inf, -np.inf], [np.inf, np.inf])
res = minimize(f, x0=[1, 2], method='cobyla', bounds=bounds)
assert res.success
assert_allclose(res.x, 0, atol=1e-3)
bounds = Bounds([1, -np.inf], [np.inf, np.inf])
res = minimize(f, x0=[1, 2], method='cobyla', bounds=bounds)
assert res.success
assert_allclose(res.x, [1, 0], atol=1e-3)