team-10/env/Lib/site-packages/scipy/signal/_polyutils.py
2025-08-02 07:34:44 +02:00

172 lines
5.2 KiB
Python

"""Partial replacements for numpy polynomial routines, with Array API compatibility.
This module contains both "old-style", np.poly1d, routines from the main numpy
namespace, and "new-style", np.polynomial.polynomial, routines.
To distinguish the two sets, the "new-style" routine names start with `npp_`
"""
import scipy._lib.array_api_extra as xpx
from scipy._lib._array_api import xp_promote, xp_default_dtype
def _sort_cmplx(arr, xp):
# xp.sort is undefined for complex dtypes. Here we only need some
# consistent way to sort a complex array, including equal magnitude elements.
arr = xp.asarray(arr)
if xp.isdtype(arr.dtype, 'complex floating'):
sorter = abs(arr) + xp.real(arr) + xp.imag(arr)**3
else:
sorter = arr
idxs = xp.argsort(sorter)
return arr[idxs]
def polyroots(coef, *, xp):
"""numpy.roots, best-effor replacement
"""
if coef.shape[0] < 2:
return xp.asarray([], dtype=coef.dtype)
root_func = getattr(xp, 'roots', None)
if root_func:
# NB: cupy.roots is broken in CuPy 13.x, but CuPy is handled via delegation
# so we never hit this code path with xp being cupy
return root_func(coef)
# companion matrix
n = coef.shape[0]
a = xp.eye(n - 1, n - 1, k=-1, dtype=coef.dtype)
a[:, -1] = -xp.flip(coef[1:]) / coef[0]
# non-symmetric eigenvalue problem is not in the spec but is available on e.g. torch
if hasattr(xp.linalg, 'eigvals'):
return xp.linalg.eigvals(a)
else:
import numpy as np
return xp.asarray(np.linalg.eigvals(np.asarray(a)))
# https://github.com/numpy/numpy/blob/v2.1.0/numpy/lib/_function_base_impl.py#L1874-L1925
def _trim_zeros(filt, trim='fb'):
first = 0
trim = trim.upper()
if 'F' in trim:
for i in filt:
if i != 0.:
break
else:
first = first + 1
last = filt.shape[0]
if 'B' in trim:
for i in filt[::-1]:
if i != 0.:
break
else:
last = last - 1
return filt[first:last]
# ### Old-style routines ###
# https://github.com/numpy/numpy/blob/v2.2.0/numpy/lib/_polynomial_impl.py#L1232
def _poly1d(c_or_r, *, xp):
""" Constructor of np.poly1d object from an array of coefficients (r=False)
"""
c_or_r = xpx.atleast_nd(c_or_r, ndim=1, xp=xp)
if c_or_r.ndim > 1:
raise ValueError("Polynomial must be 1d only.")
c_or_r = _trim_zeros(c_or_r, trim='f')
if c_or_r.shape[0] == 0:
c_or_r = xp.asarray([0], dtype=c_or_r.dtype)
return c_or_r
# https://github.com/numpy/numpy/blob/v2.2.0/numpy/lib/_polynomial_impl.py#L702-L779
def polyval(p, x, *, xp):
""" Old-style polynomial, `np.polyval`
"""
y = xp.zeros_like(x)
for pv in p:
y = y * x + pv
return y
# https://github.com/numpy/numpy/blob/v2.2.0/numpy/lib/_polynomial_impl.py#L34-L157
def poly(seq_of_zeros, *, xp):
# Only reproduce the 1D variant of np.poly
seq_of_zeros = xp.asarray(seq_of_zeros)
seq_of_zeros = xpx.atleast_nd(seq_of_zeros, ndim=1, xp=xp)
if seq_of_zeros.shape[0] == 0:
return 1.0
# prefer np.convolve etc, if available
convolve_func = getattr(xp, 'convolve', None)
if convolve_func is None:
from scipy.signal import convolve as convolve_func
dt = seq_of_zeros.dtype
a = xp.ones((1,), dtype=dt)
one = xp.ones_like(seq_of_zeros[0])
for zero in seq_of_zeros:
a = convolve_func(a, xp.stack((one, -zero)), mode='full')
if xp.isdtype(a.dtype, 'complex floating'):
# if complex roots are all complex conjugates, the roots are real.
roots = xp.asarray(seq_of_zeros, dtype=xp.complex128)
if xp.all(xp.sort(xp.imag(roots)) == xp.sort(xp.imag(xp.conj(roots)))):
a = xp.asarray(xp.real(a), copy=True)
return a
# https://github.com/numpy/numpy/blob/v2.2.0/numpy/lib/_polynomial_impl.py#L912
def polymul(a1, a2, *, xp):
a1, a2 = _poly1d(a1, xp=xp), _poly1d(a2, xp=xp)
# prefer np.convolve etc, if available
convolve_func = getattr(xp, 'convolve', None)
if convolve_func is None:
from scipy.signal import convolve as convolve_func
val = convolve_func(a1, a2)
return val
# ### New-style routines ###
# https://github.com/numpy/numpy/blob/v2.2.0/numpy/polynomial/polynomial.py#L663
def npp_polyval(x, c, *, xp, tensor=True):
if xp.isdtype(c.dtype, 'integral'):
c = xp.astype(c, xp_default_dtype(xp))
c = xpx.atleast_nd(c, ndim=1, xp=xp)
if isinstance(x, tuple | list):
x = xp.asarray(x)
if tensor:
c = xp.reshape(c, (c.shape + (1,)*x.ndim))
c0, _ = xp_promote(c[-1, ...], x, broadcast=True, xp=xp)
for i in range(2, c.shape[0] + 1):
c0 = c[-i, ...] + c0*x
return c0
# https://github.com/numpy/numpy/blob/v2.2.0/numpy/polynomial/polynomial.py#L758-L842
def npp_polyvalfromroots(x, r, *, xp, tensor=True):
r = xpx.atleast_nd(r, ndim=1, xp=xp)
# if r.dtype.char in '?bBhHiIlLqQpP':
# r = r.astype(np.double)
if isinstance(x, tuple | list):
x = xp.asarray(x)
if tensor:
r = xp.reshape(r, r.shape + (1,) * x.ndim)
elif x.ndim >= r.ndim:
raise ValueError("x.ndim must be < r.ndim when tensor == False")
return xp.prod(x - r, axis=0)