team-10/env/Lib/site-packages/torch/_dynamo/variables/dicts.py
2025-08-02 07:34:44 +02:00

940 lines
34 KiB
Python

# mypy: ignore-errors
"""
Dictionary-related variable tracking classes for PyTorch Dynamo.
This module implements variable tracking for different types of dictionary-like objects:
- Regular Python dictionaries (dict)
- Ordered dictionaries (collections.OrderedDict)
- Default dictionaries (collections.defaultdict)
- Dictionary views (keys and values)
- Sets and frozensets (implemented internally using dictionaries)
These classes are responsible for tracking dictionary operations during graph compilation,
maintaining proper guards for dictionary mutations and key existence checks. They handle
dictionary creation, modification, key/value access, and view operations while ensuring
correct behavior in the compiled code through appropriate guard installation.
The implementation uses a special _HashableTracker wrapper to handle dictionary keys
while preserving proper aliasing semantics. Sets are implemented as dictionaries with
None values for efficiency and code reuse.
"""
import collections
import functools
import types
from typing import Optional, TYPE_CHECKING
from torch._subclasses.fake_tensor import is_fake
from .. import polyfills, variables
from ..bytecode_transformation import create_call_function, create_instruction
from ..exc import raise_observed_exception, unimplemented
from ..guards import GuardBuilder, install_guard
from ..source import is_from_local_source
from ..utils import cmp_name_to_op_mapping, dict_keys, dict_values, specialize_symnode
from .base import ValueMutationNew, VariableTracker
from .constant import ConstantVariable
if TYPE_CHECKING:
from torch._dynamo.symbolic_convert import InstructionTranslator
# [Adding a new supported class within the keys of ConstDictVarialble]
# - Add its tracker type to is_hashable
# - (perhaps) Define how it is compared in _HashableTracker._eq_impl
def is_hashable(x):
# NB - performing isinstance check on a LazVT realizes the VT, accidentally
# inserting the guard. To avoid this, lazyVT `is_hashable` methods looks at
# the underlying value without realizing the VT. Consider updating the
# lazyVT `is_hashable` method if you see unnecessary guarding for a key VT.
if (
isinstance(x, variables.LazyVariableTracker)
and not x.is_realized()
and x.is_hashable()
):
return True
if isinstance(x, variables.TensorVariable):
# Tensors are hashable if they have an example_value (a fake tensor)
# Most VT's should have one.
# It'd be nice if at some point we could assert that they all have one
return x.as_proxy().node.meta.get("example_value") is not None
elif isinstance(x, variables.TupleVariable):
return all(is_hashable(e) for e in x.items)
else:
return isinstance(
x,
(
variables.BuiltinVariable,
variables.SymNodeVariable,
variables.ConstantVariable,
variables.EnumVariable,
variables.user_defined.UserDefinedClassVariable,
variables.UserFunctionVariable,
variables.SkipFunctionVariable,
variables.misc.NumpyVariable,
variables.NNModuleVariable,
variables.UnspecializedNNModuleVariable,
variables.MethodWrapperVariable,
variables.TorchInGraphFunctionVariable,
variables.TypingVariable,
variables.FunctoolsPartialVariable,
variables.WeakRefVariable,
),
)
class ConstDictVariable(VariableTracker):
_nonvar_fields = {
"user_cls",
*VariableTracker._nonvar_fields,
}
class _HashableTracker:
"""
Auxiliary opaque internal class that wraps a VariableTracker and makes it hashable
This should not be seen or touched by anything outside of ConstDictVariable and its children
Note that it's also fine to put VTs into dictionaries and sets, but doing so does not take into account aliasing
"""
def __init__(self, vt) -> None:
# We specialize SymNodes
vt = specialize_symnode(vt)
# TODO Temorarily remove to figure out what keys are we breaking on
# and add proper support for them
if not is_hashable(vt):
unimplemented(f"Dict key of type {type(vt)}. Key: {vt}")
self.vt = vt
@property
def underlying_value(self):
if (
isinstance(self.vt, variables.LazyVariableTracker)
and not self.vt.is_realized()
and self.vt.is_hashable()
):
return self.vt.original_value()
if isinstance(self.vt, variables.TensorVariable):
x = self.vt.as_proxy().node.meta["example_value"]
elif isinstance(self.vt, variables.TupleVariable):
Hashable = ConstDictVariable._HashableTracker
x = tuple(Hashable(e).underlying_value for e in self.vt.items)
elif isinstance(self.vt, variables.NNModuleVariable):
return self.vt.value
elif isinstance(self.vt, variables.UnspecializedNNModuleVariable):
return self.vt.value
elif isinstance(self.vt, variables.UserFunctionVariable):
return self.vt.get_function()
elif isinstance(self.vt, variables.WeakRefVariable):
# Access the underlying value inside the referent_vt for the key representation
Hashable = ConstDictVariable._HashableTracker
return Hashable(self.vt.referent_vt).underlying_value
else:
x = self.vt.as_python_constant()
return x
def __hash__(self):
return hash(self.underlying_value)
@staticmethod
def _eq_impl(a, b):
# TODO: Put this in utils and share it between variables/builtin.py and here
if type(a) != type(b):
return False
elif isinstance(a, tuple):
Hashable = ConstDictVariable._HashableTracker
return len(a) == len(b) and all(
Hashable._eq_impl(u, v) for u, v in zip(a, b)
)
elif is_fake(a):
return a is b
else:
return a == b
def __eq__(self, other: "ConstDictVariable._HashableTracker") -> bool:
Hashable = ConstDictVariable._HashableTracker
assert isinstance(other, Hashable) or ConstantVariable.is_literal(other), (
type(other)
)
if isinstance(other, Hashable):
return Hashable._eq_impl(self.underlying_value, other.underlying_value)
# constant
return Hashable._eq_impl(self.underlying_value, other)
def __init__(
self,
items: dict[VariableTracker, VariableTracker],
user_cls=dict,
**kwargs,
) -> None:
# .clone() pass these arguments in kwargs but they're recreated a few
# lines below
if "original_items" in kwargs:
kwargs.pop("original_items")
if "should_reconstruct_all" in kwargs:
kwargs.pop("should_reconstruct_all")
super().__init__(**kwargs)
Hashable = ConstDictVariable._HashableTracker
# Keys will just be HashableTrackers when cloning, in any other case they'll be VariableTrackers
assert all(
isinstance(x, (VariableTracker, Hashable))
and isinstance(v, VariableTracker)
for x, v in items.items()
)
def make_hashable(key):
return key if isinstance(key, Hashable) else Hashable(key)
self.items = {make_hashable(x): v for x, v in items.items()}
# need to reconstruct everything if the dictionary is an intermediate value
# or if a pop/delitem was executed
self.should_reconstruct_all = not is_from_local_source(self.source)
self.original_items = items.copy()
self.user_cls = user_cls
def as_proxy(self):
return {k.vt.as_proxy(): v.as_proxy() for k, v in self.items.items()}
def debug_repr(self):
return (
"{"
+ ", ".join(
f"{k.vt.debug_repr()}: {v.debug_repr()}" for k, v in self.items.items()
)
+ "}"
)
def as_python_constant(self):
return {
k.vt.as_python_constant(): v.as_python_constant()
for k, v in self.items.items()
}
def keys_as_python_constant(self):
self.install_dict_keys_match_guard()
return {k.vt.as_python_constant(): v for k, v in self.items.items()}
def python_type(self):
return self.user_cls
def __contains__(self, vt) -> bool:
assert isinstance(vt, VariableTracker)
Hashable = ConstDictVariable._HashableTracker
return (
is_hashable(vt)
and Hashable(vt) in self.items
and not isinstance(self.items[Hashable(vt)], variables.DeletedVariable)
)
def len(self):
return len(
[
x
for x in self.items.values()
if not isinstance(x, variables.DeletedVariable)
]
)
def has_new_items(self):
if self.should_reconstruct_all:
return True
return any(
self.is_new_item(self.original_items.get(key.vt), value)
for key, value in self.items.items()
)
def is_new_item(self, value, other):
# compare the id of the realized values if both values are not lazy VTs
if value and value.is_realized() and other.is_realized():
return id(value.realize()) != id(other.realize())
return id(value) != id(other)
def reconstruct(self, codegen):
# instructions to load collections.OrderedDict if necessary
if self.user_cls is collections.OrderedDict:
codegen.add_push_null(
lambda: codegen.extend_output(
[
codegen.create_load_python_module(collections),
codegen.create_load_attr("OrderedDict"),
]
)
)
# instructions to build the dict keys and values
num_args = 0
for key, value in self.items.items():
# We can safely call realize() here as it won't introduce any new guards
item = self.original_items.get(key.vt)
if self.is_new_item(item, value) or self.should_reconstruct_all:
codegen(key.vt)
codegen(value)
num_args += 1
# BUILD_MAP and calling collections.OrderedDict if necessary
if self.user_cls is collections.OrderedDict:
codegen.extend_output(
[
create_instruction("BUILD_MAP", arg=num_args),
*create_call_function(1, False),
]
)
# BUILD_MAP only if user_cls is dict
else:
codegen.append_output(create_instruction("BUILD_MAP", arg=num_args))
def getitem_const_raise_exception_if_absent(
self, tx: "InstructionTranslator", arg: VariableTracker
):
key = ConstDictVariable._HashableTracker(arg)
if key not in self.items:
raise_observed_exception(KeyError, tx)
return self.items[key]
def getitem_const(self, tx: "InstructionTranslator", arg: VariableTracker):
key = ConstDictVariable._HashableTracker(arg)
if key not in self.items:
unimplemented(f"dict KeyError: {arg.value}")
return self.items[key]
def maybe_getitem_const(self, arg: VariableTracker):
key = ConstDictVariable._HashableTracker(arg)
if key not in self.items:
return None
return self.items[key]
def realize_key_vt(self, arg: VariableTracker):
# Realize the LazyVT on a particular index
assert arg in self
key = ConstDictVariable._HashableTracker(arg)
index = tuple(self.items.keys()).index(key)
original_key_vt = tuple(self.original_items.keys())[index]
if isinstance(original_key_vt, variables.LazyVariableTracker):
original_key_vt.realize()
def install_dict_keys_match_guard(self):
if self.source:
install_guard(self.make_guard(GuardBuilder.DICT_KEYS_MATCH))
def install_dict_contains_guard(self, tx, args):
# Key guarding - These are the cases to consider
# 1) The dict has been mutated. In this case, we would have already
# inserted a DICT_KEYS_MATCH guard, so we can skip.
#
# 2) args[0].source is None. This happens for const keys. Here, we
# have to insert the DICT_CONTAINS guard.
#
# 3) args[0].source is not None. This can happen for non-const VTs.
# 3a) contains=True. In this case, we can access the lazyVT from
# original_items and selectively realize it.
# 3b) contains=False. There is no easy way to selectively apply this
# DICT_NOT_CONTAINS guard because our guard are represented via trees.
# Be conservative and add DICT_KEYS_MATCH guard.
from . import ConstantVariable
if not self.source:
return
if tx.output.side_effects.is_modified(self):
return
contains = args[0] in self
if args[0].source is None and isinstance(args[0], ConstantVariable):
install_guard(
self.make_guard(
functools.partial(
GuardBuilder.DICT_CONTAINS,
key=args[0].value,
invert=not contains,
)
)
)
elif args[0].source:
if contains:
self.realize_key_vt(args[0])
else:
self.install_dict_keys_match_guard()
def call_method(
self,
tx,
name,
args: "list[VariableTracker]",
kwargs: "dict[str, VariableTracker]",
) -> "VariableTracker":
# NB - Both key and value are LazyVariableTrackers in the beginning. So,
# we have to insert guards when a dict method is accessed. For this to
# be simple, we are conservative and overguard. We skip guard only for
# get/__getitem__ because the key guard will be inserted by the
# corresponding value VT. For __contains__, we add a DICT_CONTAINS
# guard. But for all the other methods, we insert the DICT_KEYS_MATCH
# guard to be conservative.
from . import BuiltinVariable, ConstantVariable, TupleVariable
Hashable = ConstDictVariable._HashableTracker
arg_hashable = args and is_hashable(args[0])
if name == "__init__":
temp_dict_vt = variables.BuiltinVariable(dict).call_dict(
tx, *args, **kwargs
)
tx.output.side_effects.mutation(self)
self.items.update(temp_dict_vt.items)
return ConstantVariable.create(None)
elif name == "__getitem__":
# Key guarding - Nothing to do. LazyVT for value will take care.
assert len(args) == 1
return self.getitem_const_raise_exception_if_absent(tx, args[0])
elif name == "items":
assert not (args or kwargs)
self.install_dict_keys_match_guard()
if self.source:
tx.output.guard_on_key_order.add(self.source.name())
return TupleVariable(
[TupleVariable([k.vt, v]) for k, v in self.items.items()]
)
elif name == "keys":
self.install_dict_keys_match_guard()
if self.source:
tx.output.guard_on_key_order.add(self.source.name())
assert not (args or kwargs)
return DictKeysVariable(self)
elif name == "values":
self.install_dict_keys_match_guard()
if self.source:
tx.output.guard_on_key_order.add(self.source.name())
assert not (args or kwargs)
return DictValuesVariable(self)
elif name == "copy":
self.install_dict_keys_match_guard()
assert not (args or kwargs)
return self.clone(
items=self.items.copy(), mutation_type=ValueMutationNew(), source=None
)
elif name == "__len__":
assert not (args or kwargs)
self.install_dict_keys_match_guard()
return ConstantVariable.create(len(self.items))
elif name == "__setitem__" and arg_hashable and self.is_mutable():
self.install_dict_keys_match_guard()
assert not kwargs and len(args) == 2
tx.output.side_effects.mutation(self)
self.items[Hashable(args[0])] = args[1]
return ConstantVariable.create(None)
elif name == "__delitem__" and arg_hashable and self.is_mutable():
self.install_dict_keys_match_guard()
self.should_reconstruct_all = True
tx.output.side_effects.mutation(self)
self.items.__delitem__(Hashable(args[0]))
return ConstantVariable.create(None)
elif name in ("pop", "get") and len(args) in (1, 2) and args[0] not in self:
# missing item, return the default value. Install no DICT_CONTAINS guard.
self.install_dict_contains_guard(tx, args)
if len(args) == 1:
if name == "pop":
raise_observed_exception(KeyError, tx)
return ConstantVariable(None)
else:
return args[1]
elif name == "pop" and arg_hashable and self.is_mutable():
self.should_reconstruct_all = True
tx.output.side_effects.mutation(self)
return self.items.pop(Hashable(args[0]))
elif name == "clear":
self.should_reconstruct_all = True
tx.output.side_effects.mutation(self)
self.items.clear()
return ConstantVariable.create(None)
elif name == "update" and self.is_mutable():
# In general, this call looks like `a.update(b, x=1, y=2, ...)`.
# Either `b` or the kwargs is omittable, but not both.
self.install_dict_keys_match_guard()
has_arg = len(args) == 1
has_kwargs = len(kwargs) > 0
if has_arg or has_kwargs:
tx.output.side_effects.mutation(self)
if has_arg:
if isinstance(args[0], ConstDictVariable):
# NB - Guard on all the keys of the other dict to ensure
# correctness.
args[0].install_dict_keys_match_guard()
dict_vt = args[0]
else:
dict_vt = BuiltinVariable.call_custom_dict(tx, dict, args[0])
self.items.update(dict_vt.items)
if has_kwargs:
# Handle kwargs
kwargs = {
Hashable(ConstantVariable.create(k)): v
for k, v in kwargs.items()
}
self.items.update(kwargs)
return ConstantVariable.create(None)
else:
return super().call_method(tx, name, args, kwargs)
elif name in ("get", "__getattr__") and args[0] in self:
# Key guarding - Nothing to do.
return self.getitem_const(tx, args[0])
elif name == "__contains__" and len(args) == 1:
self.install_dict_contains_guard(tx, args)
contains = args[0] in self
return ConstantVariable.create(contains)
elif name == "setdefault" and arg_hashable and self.is_mutable():
self.install_dict_keys_match_guard()
assert not kwargs
assert len(args) <= 2
value = self.maybe_getitem_const(args[0])
if value is not None:
return value
else:
if len(args) == 1:
x = ConstantVariable.create(None)
else:
x = args[1]
tx.output.side_effects.mutation(self)
self.items[Hashable(args[0])] = x
return x
elif name == "move_to_end":
self.install_dict_keys_match_guard()
assert not kwargs and len(args) == 1
tx.output.side_effects.mutation(self)
key = Hashable(args[0])
val = self.items[key]
self.items.pop(key)
self.items[key] = val
return ConstantVariable.create(None)
else:
return super().call_method(tx, name, args, kwargs)
def unpack_var_sequence(self, tx):
self.install_dict_keys_match_guard()
return [x.vt for x in self.items.keys()]
def call_obj_hasattr(self, tx, name):
# dict not allow setting arbitrary attributes. To check for hasattr, we can just check the __dict__ of the dict.
# OrderedDict though requires side effects tracking because it supports arbitrary setattr.
if self.user_cls is dict:
if name in self.user_cls.__dict__:
return ConstantVariable.create(True)
return ConstantVariable.create(False)
unimplemented(f"hasattr on {self.user_cls} is not supported")
def clone(self, **kwargs):
self.install_dict_keys_match_guard()
return super().clone(**kwargs)
class MappingProxyVariable(VariableTracker):
# proxies to the original dict_vt
def __init__(self, dv_dict: ConstDictVariable, **kwargs) -> None:
super().__init__(**kwargs)
assert isinstance(dv_dict, ConstDictVariable)
self.dv_dict = dv_dict
def unpack_var_sequence(self, tx):
return self.dv_dict.unpack_var_sequence(tx)
def reconstruct(self, codegen):
# load types.MappingProxyType
if self.source:
unimplemented(
"Can't reconstruct an existing mapping variable because"
" the connection to the original dict will be lost"
)
codegen.add_push_null(
lambda: codegen.extend_output(
[
codegen.create_load_python_module(types),
codegen.create_load_attr("MappingProxyType"),
]
)
)
codegen(self.dv_dict)
codegen.extend_output(create_call_function(1, False))
def call_method(
self,
tx,
name,
args: list["VariableTracker"],
kwargs: dict[str, "VariableTracker"],
) -> "VariableTracker":
if self.source and tx.output.side_effects.has_existing_dict_mutation():
unimplemented(
"A dict has been modified while we have an existing mappingproxy object. "
"A mapping proxy object, as the name suggest, proxies a mapping "
"object (usually a dict). If the original dict object mutates, it "
"is reflected in the proxy object as well. For an existing proxy "
"object, we do not know the original dict it points to. Therefore, "
"for correctness we graph break when there is dict mutation and we "
"are trying to access a proxy object."
)
return self.dv_dict.call_method(tx, name, args, kwargs)
class NNModuleHooksDictVariable(ConstDictVariable):
# Special class to avoid adding any guards on the nn module hook ids.
def install_dict_keys_match_guard(self):
pass
def install_dict_contains_guard(self, tx, args):
pass
class DefaultDictVariable(ConstDictVariable):
def __init__(self, items, user_cls, default_factory=None, **kwargs) -> None:
super().__init__(items, user_cls, **kwargs)
assert user_cls is collections.defaultdict
self.default_factory = default_factory
def is_python_constant(self):
# Return false for unsupported defaults. This ensures that a bad handler
# path is not taken in BuiltinVariable for getitem.
if self.default_factory not in [list, tuple, dict] and not self.items:
return False
return super().is_python_constant()
def debug_repr(self):
return (
f"defaultdict({self.default_factory.debug_repr()}, {super().debug_repr()})"
)
@staticmethod
def is_supported_arg(arg):
if isinstance(arg, variables.BuiltinVariable):
return arg.fn in (list, tuple, dict, set)
else:
return isinstance(arg, variables.functions.BaseUserFunctionVariable)
def call_method(
self,
tx,
name,
args: "list[VariableTracker]",
kwargs: "dict[str, VariableTracker]",
) -> "VariableTracker":
if name == "__getitem__":
assert len(args) == 1
if args[0] in self:
return self.getitem_const(tx, args[0])
else:
if self.default_factory is None:
raise KeyError(f"{args[0]}")
else:
default_var = self.default_factory.call_function(tx, [], {})
super().call_method(
tx, "__setitem__", (args[0], default_var), kwargs
)
return default_var
else:
return super().call_method(tx, name, args, kwargs)
# TODO: Implementing this via inheritance rather than composition is a
# footgun, because self method calls in dict will route back to the set
# implementation, which is almost assuredly wrong
class SetVariable(ConstDictVariable):
"""We model a sets as dictonary with None values"""
def __init__(
self,
items: list[VariableTracker],
**kwargs,
) -> None:
items = dict.fromkeys(items, SetVariable._default_value())
super().__init__(items, **kwargs)
def debug_repr(self):
if not self.items:
return "set()"
else:
return "{" + ",".join(k.vt.debug_repr() for k in self.items.keys()) + "}"
@property
def set_items(self):
return set(self.items.keys())
@staticmethod
def _default_value():
# Variable to fill in he keys of the dictinary
return ConstantVariable.create(None)
def as_proxy(self):
return {k.vt.as_proxy() for k in self.set_items}
def python_type(self):
return set
def as_python_constant(self):
return {k.vt.as_python_constant() for k in self.set_items}
def reconstruct(self, codegen):
codegen.foreach([x.vt for x in self.set_items])
codegen.append_output(create_instruction("BUILD_SET", arg=len(self.set_items)))
def call_method(
self,
tx,
name,
args: list[VariableTracker],
kwargs: dict[str, VariableTracker],
) -> "VariableTracker":
# We foward the calls to the dictionary model
if name == "add":
assert not kwargs
assert len(args) == 1
name = "__setitem__"
args = (args[0], SetVariable._default_value())
elif name == "pop":
assert not kwargs
assert not args
# Choose an item at random and pop it via the Dict.pop method
result = self.set_items.pop().vt
super().call_method(tx, name, (result,), kwargs)
return result
elif name == "isdisjoint":
assert not kwargs
assert len(args) == 1
return variables.UserFunctionVariable(
polyfills.set_isdisjoint
).call_function(tx, [self, args[0]], {})
elif name == "intersection":
assert not kwargs
assert len(args) == 1
return variables.UserFunctionVariable(
polyfills.set_intersection
).call_function(tx, [self, args[0]], {})
elif name == "union":
assert not kwargs
assert len(args) == 1
return variables.UserFunctionVariable(polyfills.set_union).call_function(
tx, [self, args[0]], {}
)
elif name == "difference":
assert not kwargs
assert len(args) == 1
return variables.UserFunctionVariable(
polyfills.set_difference
).call_function(tx, [self, args[0]], {})
elif name == "update" and len(args) == 1 and self.is_mutable():
assert not kwargs
assert len(args) == 1
return variables.UserFunctionVariable(polyfills.set_update).call_function(
tx, [self, args[0]], {}
)
elif name == "remove":
assert not kwargs
assert len(args) == 1
if args[0] not in self:
unimplemented("key does not exist")
return super().call_method(tx, "pop", args, kwargs)
elif name == "discard":
assert not kwargs
assert len(args) == 1
if args[0] in self:
return super().call_method(tx, "pop", args, kwargs)
else:
return ConstantVariable.create(value=None)
return super().call_method(tx, name, args, kwargs)
def getitem_const(self, tx: "InstructionTranslator", arg: VariableTracker):
raise RuntimeError("Illegal to getitem on a set")
def install_dict_keys_match_guard(self):
# Already EQUALS_MATCH guarded
pass
def install_dict_contains_guard(self, tx, args):
# Already EQUALS_MATCH guarded
pass
class FrozensetVariable(SetVariable):
def __init__(
self,
items: list[VariableTracker],
**kwargs,
) -> None:
super().__init__(items, **kwargs)
def debug_repr(self):
if not self.items:
return "frozenset()"
else:
return "{" + ",".join(k.vt.debug_repr() for k in self.items.keys()) + "}"
@property
def set_items(self):
return self.items.keys()
def python_type(self):
return frozenset
def as_python_constant(self):
return {k.vt.as_python_constant() for k in self.set_items}
def reconstruct(self, codegen):
codegen.foreach([x.vt for x in self.set_items])
codegen.add_push_null(
lambda: codegen.extend_output(
[
codegen.create_load_global("frozenset"),
]
)
)
codegen.extend_output(create_call_function(0, False))
def call_method(
self,
tx,
name,
args: list[VariableTracker],
kwargs: dict[str, VariableTracker],
) -> "VariableTracker":
if name in ["add", "pop", "update", "remove", "discard", "clear"]:
raise RuntimeError(f"Illegal call_method {name} on a frozenset")
return super().call_method(tx, name, args, kwargs)
class DictKeySetVariable(SetVariable):
def __init__(
self,
items: list[VariableTracker],
**kwargs,
) -> None:
super().__init__(items, **kwargs)
def debug_repr(self):
if not self.items:
return "dict_keys([])"
else:
return (
"dict_keys(["
+ ",".join(k.vt.debug_repr() for k in self.items.keys())
+ "])"
)
@property
def set_items(self):
return self.items
def python_type(self):
return dict_keys
def as_python_constant(self):
return dict.fromkeys(
{k.vt.as_python_constant() for k in self.set_items}, None
).keys()
def call_method(
self,
tx,
name,
args: list[VariableTracker],
kwargs: dict[str, VariableTracker],
) -> "VariableTracker":
if name in ["add", "pop", "update", "remove", "discard", "clear"]:
raise RuntimeError(f"Illegal call_method {name} on a dict_keys")
return super().call_method(tx, name, args, kwargs)
class DictViewVariable(VariableTracker):
"""
Models _PyDictViewObject
This is an "abstract" class. Subclasses will override kv and the items method
"""
kv: Optional[str] = None
def __init__(self, dv_dict: ConstDictVariable, **kwargs) -> None:
super().__init__(**kwargs)
assert self.kv in ("keys", "values")
assert isinstance(dv_dict, ConstDictVariable)
self.dv_dict = dv_dict
@property
def view_items(self):
return getattr(self.dv_dict.items, self.kv)()
@property
def view_items_vt(self):
# Returns an iterable of the unpacked items
# Implement in the subclasses
raise NotImplementedError
def unpack_var_sequence(self, tx):
def unwrap(x):
return x.vt if self.kv == "keys" else x
return [unwrap(x) for x in self.view_items]
def reconstruct(self, codegen):
codegen(self.dv_dict)
codegen.load_method(self.kv)
codegen.call_method(0)
def call_method(
self,
tx,
name,
args: list["VariableTracker"],
kwargs: dict[str, "VariableTracker"],
) -> "VariableTracker":
if name == "__len__":
return self.dv_dict.call_method(tx, name, args, kwargs)
return super().call_method(tx, name, args, kwargs)
class DictKeysVariable(DictViewVariable):
kv = "keys"
@property
def set_items(self):
return set(self.view_items)
@property
def view_items_vt(self):
# Returns an iterable of the unpacked items
return [x.vt for x in self.view_items]
def python_type(self):
return dict_keys
def call_method(
self,
tx,
name,
args: list["VariableTracker"],
kwargs: dict[str, "VariableTracker"],
) -> "VariableTracker":
if name == "__contains__":
return self.dv_dict.call_method(tx, name, args, kwargs)
if name in cmp_name_to_op_mapping:
if not isinstance(args[0], (SetVariable, DictKeysVariable)):
return ConstantVariable.create(NotImplemented)
return ConstantVariable.create(
cmp_name_to_op_mapping[name](self.set_items, args[0].set_items)
)
return super().call_method(tx, name, args, kwargs)
class DictValuesVariable(DictViewVariable):
# DictValuesVariable is an iterable but cannot be compared.
kv = "values"
@property
def view_items_vt(self):
return list(self.view_items)
def python_type(self):
return dict_values