2743 lines
95 KiB
Python
2743 lines
95 KiB
Python
# mypy: allow-untyped-defs
|
|
import functools
|
|
import math
|
|
import operator
|
|
from typing import * # noqa: F403
|
|
from typing import Optional
|
|
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torch.fx.operator_schemas import normalize_function
|
|
from torch.nested._internal.sdpa import jagged_scaled_dot_product_attention
|
|
|
|
from .nested_tensor import NestedTensor
|
|
|
|
|
|
__all__: list[Any] = []
|
|
|
|
JAGGED_OPS_TABLE: Dict[Any, Any] = {}
|
|
|
|
|
|
def _outer_to_inner_dim(ndim, dim, ragged_dim, canonicalize=False):
|
|
from torch._prims_common import canonicalize_dims
|
|
|
|
if isinstance(dim, (tuple, list)):
|
|
output = type(dim)(_outer_to_inner_dim(ndim, d, ragged_dim) for d in dim)
|
|
# ensure no duplicates, which can result from both batch and ragged mapping to 0
|
|
return type(output)(dict.fromkeys(output))
|
|
|
|
if canonicalize:
|
|
dim = canonicalize_dims(ndim, dim)
|
|
|
|
assert dim >= 0 and dim < ndim
|
|
|
|
# Map dim=0 (AKA batch dim) -> packed dim i.e. outer ragged dim - 1.
|
|
# For other dims, subtract 1 to convert to inner space.
|
|
return ragged_dim - 1 if dim == 0 else dim - 1
|
|
|
|
|
|
def _wrap_jagged_dim(
|
|
ndim,
|
|
dim,
|
|
ragged_dim,
|
|
op_name,
|
|
convert_to_inner_dim=True,
|
|
allow_ragged_dim=False,
|
|
allow_batch_dim=False,
|
|
):
|
|
from torch._prims_common import canonicalize_dims
|
|
|
|
wrapped = canonicalize_dims(ndim, dim)
|
|
if wrapped == ragged_dim and not allow_ragged_dim:
|
|
raise RuntimeError(f"{op_name}(): not supported for NestedTensor on ragged dim")
|
|
elif wrapped == 0 and not allow_batch_dim:
|
|
raise RuntimeError(f"{op_name}(): not supported for NestedTensor on dim=0")
|
|
ret = (
|
|
_outer_to_inner_dim(ndim, wrapped, ragged_dim)
|
|
if convert_to_inner_dim
|
|
else wrapped
|
|
)
|
|
if allow_batch_dim:
|
|
# Need to disambiguate whether we're operating on the batch dim or not.
|
|
# Operating on dim=1 -> dim=0 after the inner dim conversion.
|
|
operating_on_batch = wrapped == 0
|
|
return (ret, operating_on_batch)
|
|
return ret
|
|
|
|
|
|
def _wrap_jagged_dims(ndim, dims, op_name, ragged_idx=1):
|
|
"""
|
|
For NestedTensor operators,
|
|
wraps dimensions to non-negative values,
|
|
and returns metadata related to reduction dimension(s).
|
|
"""
|
|
from torch._prims_common import canonicalize_dims
|
|
|
|
assert isinstance(
|
|
dims, (tuple, list)
|
|
), f"_wrap_jagged_dims(): cannot iterate over dimensions of type {type(dims)}"
|
|
|
|
wrapped_dims = [
|
|
canonicalize_dims(ndim, d) for d in dims
|
|
] # convert all indices to non-negative values
|
|
|
|
operate_on_batch = 0 in wrapped_dims
|
|
operate_on_ragged = ragged_idx in wrapped_dims
|
|
operate_on_non_batch = any(d != 0 and d != ragged_idx for d in wrapped_dims)
|
|
|
|
# ensure no duplicates, which can result from both batch and ragged mapping to 0
|
|
outer_to_inner_dim = tuple(
|
|
dict.fromkeys(_outer_to_inner_dim(ndim, d, ragged_idx) for d in wrapped_dims)
|
|
)
|
|
|
|
return outer_to_inner_dim, operate_on_batch, operate_on_ragged, operate_on_non_batch
|
|
|
|
|
|
def check_schema(schema_str: str, func, *args, **kwargs) -> None:
|
|
named_arg_types = schema_str.split(", ")
|
|
num_optional_args = [x.endswith("?") for x in named_arg_types].count(True)
|
|
min_args = len(named_arg_types) - num_optional_args
|
|
|
|
# special case: ellipses allows for any number of unchecked args at the end
|
|
if named_arg_types[-1] == "...":
|
|
named_arg_types = named_arg_types[:-1]
|
|
else:
|
|
if not (len(args) >= min_args and len(args) <= len(named_arg_types)):
|
|
raise ValueError(
|
|
f"NestedTensor {func.__name__}({schema_str}): expected at least {min_args} "
|
|
f"arguments and at most {len(named_arg_types)} arguments, but got: "
|
|
f"{len(args)} arguments"
|
|
)
|
|
|
|
arg_type_check_fns = {
|
|
"t": lambda x: isinstance(x, torch.Tensor) and not isinstance(x, NestedTensor),
|
|
"jt": lambda x: isinstance(x, NestedTensor)
|
|
and x._lengths is None
|
|
and x._ragged_idx == 1, # ops with "jt" require contiguous JT only
|
|
"jt_all": lambda x: isinstance(
|
|
x, NestedTensor
|
|
), # ops with "jt_all" can accept all kinds of JT
|
|
"any": lambda x: True,
|
|
}
|
|
for i, named_arg_type in enumerate(named_arg_types):
|
|
name, arg_type = named_arg_type.split(": ")
|
|
is_optional = arg_type.endswith("?")
|
|
normalized_arg_type = arg_type[:-1] if is_optional else arg_type
|
|
if normalized_arg_type not in arg_type_check_fns.keys():
|
|
raise AssertionError(f"Unknown arg type: {normalized_arg_type}")
|
|
|
|
if i >= len(args):
|
|
if not is_optional:
|
|
raise ValueError(
|
|
f"NestedTensor {func.__name__}({schema_str}) "
|
|
f"missing required argument: {name}"
|
|
)
|
|
continue
|
|
|
|
_check_fn = arg_type_check_fns[normalized_arg_type]
|
|
|
|
def check_fn(x, is_optional=is_optional):
|
|
if is_optional:
|
|
return x is None or _check_fn(x)
|
|
else:
|
|
return _check_fn(x)
|
|
|
|
if not check_fn(args[i]):
|
|
type_to_desc = {
|
|
"t": "tensor",
|
|
"t?": "optional tensor",
|
|
"jt": "contiguous jagged layout NestedTensor",
|
|
"jt_all": "jagged layout NestedTensor",
|
|
"any": "<any type>",
|
|
}
|
|
|
|
raise ValueError(
|
|
f"NestedTensor {func.__name__}({schema_str}): expected {name} to be a "
|
|
f"{type_to_desc[arg_type]}"
|
|
)
|
|
|
|
|
|
def check_ragged_dim_same(
|
|
func, a: NestedTensor, a_name: str, b: NestedTensor, b_name: str
|
|
) -> None:
|
|
# Calling into .shape here
|
|
if a._size[a._ragged_idx] != b._size[b._ragged_idx]:
|
|
raise RuntimeError(
|
|
f"NestedTensor {func.__name__}: expected {a_name} and {b_name} to have the "
|
|
"same exact offsets tensor."
|
|
)
|
|
|
|
|
|
# returns True if the raggedness-relevant portions of the NT shape
|
|
# match those of the specified size
|
|
def raggedness_matches(nt, size):
|
|
end = nt._ragged_idx + 1
|
|
nt_ragged = nt._size[:end]
|
|
size_ragged = size[:end]
|
|
return len(nt_ragged) == len(size_ragged) and (
|
|
all(ns == s or s == -1 for ns, s in zip(nt_ragged, size_ragged))
|
|
)
|
|
|
|
|
|
def squeeze_leading_ones(t):
|
|
# Note: [ Squeezing leading ones ]
|
|
#
|
|
# Squeeze leading ones from t.
|
|
#
|
|
# We want:
|
|
# (B, j0, ?, ?) + (1, 1, ?, ?) -> (B, j0, ?, ?)
|
|
# (B, j0, ?, ?) + (1, 1, 1, ?, ?) -> (1, B, j0, ?, ?) (not yet supported)
|
|
#
|
|
# 1) Squeeze extra ones and grab values from NT
|
|
# (1, 1, ?, ?) -> (?, ?) and (sum(*), ?, ?) -> (B, j0, ?, ?)
|
|
# 2) Do dense broadcasting:
|
|
# (sum(*), ?, ?) + (?, ?) -> (sum(*), ?, ?)
|
|
# 3) Construct nested tensor
|
|
# (sum(*), ?, ?) -> (B, j0, ?, ?)
|
|
#
|
|
# If unsqueezing on the 0th dim becomes supported, we would unsqueeze
|
|
# at step (4) and we would need to update this function to record how
|
|
# many ones we unsqueezed.
|
|
while t.dim() > 0 and t.shape[0] == 1:
|
|
t = t.squeeze(0)
|
|
return t
|
|
|
|
|
|
def register_func(tables, aten_ops, schema_str):
|
|
if not isinstance(aten_ops, list):
|
|
aten_ops = [aten_ops]
|
|
if not isinstance(tables, list):
|
|
tables = [tables]
|
|
|
|
def wrapper(func):
|
|
for aten_op in aten_ops:
|
|
|
|
def get_inner(aten_op):
|
|
def inner(*args, **kwargs):
|
|
check_schema(schema_str, func, *args, **kwargs)
|
|
return func(aten_op, *args, **kwargs)
|
|
|
|
return inner
|
|
|
|
for table in tables:
|
|
table[aten_op] = get_inner(aten_op)
|
|
return func
|
|
|
|
return wrapper
|
|
|
|
|
|
register_jagged_func = functools.partial(register_func, JAGGED_OPS_TABLE)
|
|
|
|
|
|
def lookup_jagged(func, *args, **kwargs) -> Optional[Callable]:
|
|
dispatch_func = JAGGED_OPS_TABLE.get(func, None)
|
|
if dispatch_func is not None:
|
|
return dispatch_func
|
|
|
|
# Handle pointwise fallbacks
|
|
if torch.Tag.pointwise in func.tags:
|
|
from torch.fx.experimental.symbolic_shapes import is_nested_int
|
|
|
|
# No pointwise ops legitimately accept nested int inputs. Without this check,
|
|
# they will be incorrectly interpreted as tensors.
|
|
# See https://github.com/pytorch/pytorch/issues/138496
|
|
for arg in args:
|
|
if is_nested_int(arg):
|
|
raise RuntimeError(
|
|
f"NestedTensor {func.__name__}: invalid argument {arg}"
|
|
)
|
|
|
|
# Assume there aren't additional tensors that aren't the "unary/binary" args
|
|
num_tensor_args = sum(isinstance(x, torch.Tensor) for x in args)
|
|
if num_tensor_args == 1:
|
|
# Build up the check schema string. The first tensor arg is assumed to be
|
|
# an NJT and other args are sent through as-is.
|
|
schema_parts = []
|
|
for arg in func._schema.arguments:
|
|
if isinstance(arg.type, torch.TensorType):
|
|
schema_parts.append(f"{arg.name}: jt_all")
|
|
break
|
|
else:
|
|
schema_parts.append(f"{arg.name}: any")
|
|
schema_parts.append("...")
|
|
check_schema_str = ", ".join(schema_parts)
|
|
check_schema(check_schema_str, func, *args, **kwargs)
|
|
return functools.partial(jagged_unary_pointwise, func)
|
|
elif num_tensor_args == 2:
|
|
check_schema("lhs: any, rhs: any, ...", func, *args, **kwargs)
|
|
return functools.partial(jagged_binary_pointwise, func)
|
|
|
|
return None
|
|
|
|
|
|
def extract_kwargs(arg):
|
|
kwargs = {
|
|
"offsets": arg.offsets(),
|
|
"lengths": arg.lengths(),
|
|
"_metadata_cache": arg._metadata_cache,
|
|
"_ragged_idx": arg._ragged_idx,
|
|
}
|
|
return kwargs
|
|
|
|
|
|
def jagged_unary_pointwise(func, *args, **kwargs):
|
|
# assume if we get here that there is a single NJT input in the args
|
|
njt = next(arg for arg in args if isinstance(arg, NestedTensor))
|
|
return NestedTensor(
|
|
func(*(arg._values if arg is njt else arg for arg in args), **kwargs),
|
|
**extract_kwargs(njt),
|
|
)
|
|
|
|
|
|
def jagged_binary_pointwise(func, *args, **kwargs):
|
|
a, b = args[0], args[1]
|
|
assert isinstance(a, NestedTensor) or isinstance(b, NestedTensor)
|
|
|
|
mismatch_error_msg = (
|
|
"cannot call binary pointwise function {} with inputs of shapes {} and {}"
|
|
)
|
|
# a is NT, b is NT
|
|
if isinstance(a, NestedTensor) and isinstance(b, NestedTensor):
|
|
# ex: (B, j0, D) + (B, j0, D)
|
|
# ex: (B, j0, D) + (B, j0, 1)
|
|
if raggedness_matches(a, b._size):
|
|
return NestedTensor(
|
|
func(a._values, b._values, *args[2:], **kwargs), **extract_kwargs(a)
|
|
)
|
|
raise RuntimeError(mismatch_error_msg.format(func.__name__, a._size, b._size))
|
|
# either a is NT or b is NT at this point
|
|
a_is_nt = isinstance(a, NestedTensor)
|
|
extracted_kwargs = extract_kwargs(a) if a_is_nt else extract_kwargs(b)
|
|
|
|
# === Handle broadcasting across the batch / ragged dims ===
|
|
|
|
# Easy case: take advantage of pre-existing broadcasting logic
|
|
# ex: (B, j0, ?, ?) + (?) -> (B, j0, ?, ?)
|
|
# ex: (B, j0, ?, ?) + (?, ?) -> (B, j0, ?, ?)
|
|
# ex: (B, j0, ?, ?) + (1, 1, ?, ?) -> (B, j0, ?, ?)
|
|
nt, t = (a, b) if a_is_nt else (b, a)
|
|
# See Note: [ Squeezing leading ones ]
|
|
if t.dim() > nt.dim():
|
|
raise NotImplementedError("NYI: broadcasting NT with T with larger dim")
|
|
t_squeezed = squeeze_leading_ones(t)
|
|
if nt.dim() >= t_squeezed.dim() + 2:
|
|
lhs, rhs = (nt._values, t_squeezed) if a_is_nt else (t_squeezed, nt._values)
|
|
return NestedTensor(func(lhs, rhs, *args[2:], **kwargs), **extracted_kwargs)
|
|
|
|
# Harder case: do manual broadcasting when NT dim == non-NT dim
|
|
# ex: (B, j0, D_0, D_1) + (B, 1, D_0, D_1) -> (B, j0, D_0, D_1)
|
|
if a.dim() == b.dim():
|
|
# ex: (B, j0, D_0, D_1) + (1, 1, D_0, D_1) -> should
|
|
# be (B, j0, D_0, D_1) but not yet supported
|
|
if a.shape[0] != b.shape[0]:
|
|
raise RuntimeError(
|
|
mismatch_error_msg.format(func.__name__, a.shape, b.shape)
|
|
)
|
|
|
|
from .nested_tensor import nested_from_padded
|
|
|
|
# handle broadcasting via padded dense -> jagged conversion
|
|
min_seqlen = nt._maybe_min_seqlen
|
|
max_seqlen = nt._maybe_max_seqlen
|
|
padded_max_S = max_seqlen
|
|
total_L = nt._values.shape[nt._ragged_idx - 1]
|
|
if padded_max_S is None:
|
|
# use upper bound on max seqlen if it's not present
|
|
padded_max_S = total_L
|
|
|
|
# convert dense tensor -> jagged
|
|
t = t.expand(
|
|
[x if i != nt._ragged_idx else padded_max_S for i, x in enumerate(t.shape)]
|
|
)
|
|
t_as_nt = nested_from_padded(
|
|
t,
|
|
offsets=nt._offsets,
|
|
ragged_idx=nt._ragged_idx,
|
|
sum_S=total_L,
|
|
min_seqlen=min_seqlen,
|
|
max_seqlen=max_seqlen,
|
|
)
|
|
|
|
# function call with two NJTs
|
|
lhs, rhs = (nt, t_as_nt) if a_is_nt else (t_as_nt, nt)
|
|
return func(lhs, rhs, *args[2:], **kwargs)
|
|
|
|
# ex: (B, j0, D_0, D_1) + (A, B, 1, D_0, D_1) -> error because this breaks the invariant
|
|
# that ragged dim is wrt left-most batch dim
|
|
raise RuntimeError(mismatch_error_msg.format(func.__name__, a.shape, b.shape))
|
|
|
|
|
|
def jagged_torch_function(func, *args, **kwargs):
|
|
# SDPA has special kernels that handle nested tensors.
|
|
# Dispatch to the correct implementation here
|
|
if func is torch._C._nn.scaled_dot_product_attention:
|
|
return jagged_scaled_dot_product_attention(*args, **kwargs)
|
|
|
|
if func.__name__ == "apply_":
|
|
func(args[0]._values, *args[1:], **kwargs)
|
|
return args[0]
|
|
|
|
# Handle flatten() here because it's CompositeImplicit.
|
|
if func.__name__ == "flatten":
|
|
|
|
def _flatten_sig(input, start_dim=0, end_dim=-1):
|
|
pass
|
|
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
_flatten_sig, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
# NB: stay in outer dim space because we're going to redispatch on a NT input
|
|
start_dim = _wrap_jagged_dim(
|
|
inp.dim(),
|
|
new_kwargs["start_dim"],
|
|
inp._ragged_idx,
|
|
"flatten",
|
|
convert_to_inner_dim=False,
|
|
)
|
|
end_dim = _wrap_jagged_dim(
|
|
inp.dim(),
|
|
new_kwargs["end_dim"],
|
|
inp._ragged_idx,
|
|
"flatten",
|
|
convert_to_inner_dim=False,
|
|
)
|
|
|
|
if start_dim == end_dim:
|
|
return inp
|
|
|
|
product = functools.reduce(operator.mul, inp.shape[start_dim : end_dim + 1])
|
|
new_shape = (*inp.shape[:start_dim], product, *inp.shape[end_dim + 1 :])
|
|
|
|
return inp.reshape(*new_shape)
|
|
|
|
# Handle nested-specific input validation for CompositeImplicit rms_norm
|
|
if func.__name__ == "rms_norm":
|
|
|
|
def _rms_norm_sig(input, normalized_shape, weight=None, eps=None):
|
|
pass
|
|
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
_rms_norm_sig, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
normalized_shape = new_kwargs.pop("normalized_shape")
|
|
|
|
# can't normalize over the ragged dim (yet)
|
|
max_normalizable = inp.dim() - inp._ragged_idx - 1
|
|
if len(normalized_shape) > max_normalizable:
|
|
raise ValueError(
|
|
"rms_norm(): Normalization over the ragged dim not supported for nested tensors"
|
|
)
|
|
|
|
with torch._C.DisableTorchFunctionSubclass():
|
|
return func(*args, **kwargs)
|
|
|
|
raise NotImplementedError(func)
|
|
|
|
|
|
@register_jagged_func(
|
|
[
|
|
torch.ops.aten.is_non_overlapping_and_dense.default,
|
|
torch.ops.aten.sym_size.default,
|
|
torch.ops.aten.dim.default,
|
|
torch.ops.aten.numel.default,
|
|
torch.ops.aten.sym_numel.default,
|
|
torch.ops.aten.sym_stride.default,
|
|
torch.ops.aten.sym_storage_offset.default,
|
|
],
|
|
"self: jt_all",
|
|
)
|
|
def tensor_attr_supported_getter(func, *args, **kwargs):
|
|
if func == torch.ops.aten.is_non_overlapping_and_dense.default:
|
|
return False
|
|
|
|
if func == torch.ops.aten.sym_size.default:
|
|
return args[0]._size
|
|
|
|
if func == torch.ops.aten.dim.default:
|
|
return len(args[0]._size)
|
|
|
|
if func in (torch.ops.aten.sym_numel.default, torch.ops.aten.numel.default):
|
|
if args[0]._lengths is not None:
|
|
return int(sum(args[0]._lengths) * math.prod(args[0]._size[2:]))
|
|
return args[0]._values.numel()
|
|
|
|
if func == torch.ops.aten.sym_stride.default:
|
|
return args[0]._strides
|
|
|
|
if func == torch.ops.aten.sym_storage_offset.default:
|
|
return args[0]._values.storage_offset()
|
|
|
|
|
|
@register_jagged_func(torch.ops.prim.layout.default, "self: jt_all")
|
|
def prim_layout_default(func, *args, **kwargs):
|
|
return torch.jagged
|
|
|
|
|
|
@register_jagged_func(
|
|
[torch.ops.aten.size.default],
|
|
"self: jt_all",
|
|
)
|
|
def tensor_attr_unsupported_getter(func, *args, **kwargs):
|
|
if func == torch.ops.aten.size.default:
|
|
raise RuntimeError(
|
|
"NestedTensor does not support directly calling torch.ops.aten.size; "
|
|
"please use `nested_tensor.size()` instead."
|
|
)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.is_contiguous.default, "self: jt_all")
|
|
def is_contiguous_general(func, *args, **kwargs):
|
|
from torch._prims_common import is_contiguous_for_memory_format
|
|
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
inp = new_kwargs.pop("input")
|
|
|
|
# If created from narrow() check for lengths
|
|
if inp.lengths() is not None:
|
|
return False
|
|
|
|
new_kwargs["memory_format"] = new_kwargs.get(
|
|
"memory_format", torch.contiguous_format
|
|
)
|
|
if new_kwargs["memory_format"] == torch.preserve_format:
|
|
return True
|
|
return is_contiguous_for_memory_format(inp._values, **new_kwargs)
|
|
|
|
|
|
register_jagged_func(
|
|
torch.ops.aten.is_contiguous.memory_format, "self: jt_all, memory_format: any?"
|
|
)(is_contiguous_general)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.clone.default, "input: jt_all, memory_format: any?"
|
|
)
|
|
def clone_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
new_meta = extract_kwargs(inp)
|
|
|
|
if inp._lengths is not None:
|
|
if new_kwargs["memory_format"] == torch.contiguous_format:
|
|
# need to copy to remove "holes" non-contiguity / lengths metadata
|
|
# TODO: write a kernel for this
|
|
from .nested_tensor import jagged_from_list
|
|
|
|
# TODO: We probably want the output to have the same ragged structure / nested int.
|
|
assert (
|
|
inp._ragged_idx == 1
|
|
), "NJT with ragged_idx != 1 not supported for contiguous clone"
|
|
contig, _ = jagged_from_list(inp.unbind(), offsets=None)
|
|
return contig
|
|
|
|
return NestedTensor(func(inp._values, **new_kwargs), **new_meta)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.linear.default, "input: jt, weight: t, bias: t?")
|
|
def linear_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.linear_backward.default,
|
|
"self: jt, grad_output: jt, weight: t, output_mask: any",
|
|
)
|
|
def linear_backward_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
grad_output = new_kwargs.pop("grad_output")
|
|
weight = new_kwargs.pop("weight")
|
|
output_mask = new_kwargs.pop("output_mask")
|
|
|
|
ds, dw, db = None, None, None
|
|
check_ragged_dim_same(func, inp, "self", grad_output, "grad_output")
|
|
if output_mask[0]:
|
|
ds = NestedTensor(
|
|
torch.matmul(grad_output._values, weight), **extract_kwargs(grad_output)
|
|
)
|
|
if output_mask[1]:
|
|
# NB: Fold dims of values for input and grad_output to treat them as 2D. This
|
|
# trick avoids materializing large intermediates and immediately reducing over
|
|
# them via sum(). This is equivalent to computing:
|
|
# torch.matmul(grad_output._values.transpose(-2, -1), inp._values)
|
|
# and then summing over the leading dimensions to get a 2D weight grad.
|
|
grad_2d = grad_output._values.reshape(-1, weight.size(0))
|
|
input_2d = inp._values.reshape(-1, weight.size(1))
|
|
dw = torch.matmul(grad_2d.t(), input_2d)
|
|
if output_mask[2]:
|
|
# Sum over all but the last dim to get a 1D bias grad. We cannot
|
|
# rely on the autograd engine to reduce for us, because returning a
|
|
# tensor aliasing the input would violate the aten signature annotation
|
|
reduce_dims = tuple(range(grad_output._values.ndim - 1))
|
|
if reduce_dims == ():
|
|
db = grad_output._values.clone()
|
|
else:
|
|
db = torch.sum(grad_output._values, reduce_dims, keepdim=False)
|
|
return (ds, dw, db)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.to.dtype, "input: jt_all, dtype: any")
|
|
def to_dtype(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten._to_copy.default, "self: jt_all")
|
|
def to_copy_default(func, *args, **kwargs):
|
|
from .nested_tensor import _tensor_symint_registry
|
|
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
# don't change layout
|
|
new_kwargs.pop("layout")
|
|
|
|
new_values = func(inp._values, **new_kwargs)
|
|
new_offsets = inp._offsets.to(device=new_values.device)
|
|
new_lengths = None
|
|
if inp._lengths is not None:
|
|
new_lengths = inp._lengths.to(device=new_values.device)
|
|
|
|
from torch._subclasses.fake_tensor import FakeTensor
|
|
from torch._subclasses.functional_tensor import (
|
|
FunctionalTensor,
|
|
mb_unwrap_functional_tensor,
|
|
)
|
|
|
|
ragged_source = inp._offsets if inp._lengths is None else inp._lengths
|
|
new_thing = new_offsets if new_lengths is None else new_lengths
|
|
if isinstance(new_thing, (FakeTensor, FunctionalTensor)):
|
|
# Temporary hack until we have the union find
|
|
tgt = mb_unwrap_functional_tensor(new_thing)
|
|
src = mb_unwrap_functional_tensor(ragged_source)
|
|
tgt.nested_int_memo = src.nested_int_memo
|
|
else:
|
|
_tensor_symint_registry[new_thing] = _tensor_symint_registry[ragged_source]
|
|
inp_kwargs = extract_kwargs(inp)
|
|
inp_kwargs["offsets"] = new_offsets
|
|
inp_kwargs["lengths"] = new_lengths
|
|
|
|
output = NestedTensor(new_values, **inp_kwargs)
|
|
return output
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.copy_.default, "self: jt_all, src: jt_all, non_blocking: any?"
|
|
)
|
|
def copy_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
inp = new_kwargs.pop("input")
|
|
src = new_kwargs.pop("src")
|
|
if inp._size != src._size:
|
|
# try to recursively copy_ on unbound components to get around nested int mismatch
|
|
# TODO: eventually do a direct copy when this is possible
|
|
inp_comps = inp.unbind()
|
|
inp_comp_shapes = [c.shape for c in inp_comps]
|
|
src_comps = src.unbind()
|
|
src_comp_shapes = [c.shape for c in src_comps]
|
|
if inp_comp_shapes != src_comp_shapes:
|
|
raise RuntimeError(
|
|
"copy_(): expected compatible input and src shapes, but got: "
|
|
f"{inp.shape} and {src.shape}"
|
|
)
|
|
for inp_comp, src_comp in zip(inp_comps, src_comps):
|
|
inp_comp.copy_(src_comp)
|
|
|
|
# AOTD allows mutations of inputs only, (not views of the inputs).
|
|
# NJT.values() returns _values.detach() to workaround some issues.
|
|
# To keep mutation in the graph, AOTD manually calls copy_ on the input (NJT).
|
|
# Here we directly mutate self._values to not emit .detach() in the graph, which would make it non-compilable.
|
|
inp._values.copy_(src._values)
|
|
return inp
|
|
|
|
|
|
register_jagged_func(torch.ops.aten.detach.default, "self: jt_all")(
|
|
jagged_unary_pointwise
|
|
)
|
|
|
|
|
|
@register_jagged_func(
|
|
[
|
|
torch.ops.aten.empty_like.default,
|
|
torch.ops.aten.ones_like.default,
|
|
torch.ops.aten.zeros_like.default,
|
|
torch.ops.aten.rand_like.default,
|
|
torch.ops.aten.randn_like.default,
|
|
],
|
|
"self: jt_all",
|
|
)
|
|
def like_factory_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
# Default layout is technically torch.strided but only jagged is supported here.
|
|
# Rather than force users to specify the layout, assume jagged.
|
|
# This should be set to strided for redispatching on values.
|
|
new_kwargs["layout"] = torch.strided
|
|
|
|
new_values = func(inp._values, **new_kwargs)
|
|
new_offsets = inp._offsets.to(device=new_values.device)
|
|
new_lengths = None
|
|
if inp._lengths is not None:
|
|
new_lengths = inp._lengths.to(device=new_values.device)
|
|
output_kwargs = extract_kwargs(inp)
|
|
if "offsets" in output_kwargs:
|
|
output_kwargs["offsets"] = new_offsets
|
|
if "lengths" in output_kwargs:
|
|
output_kwargs["lengths"] = new_lengths
|
|
|
|
if inp.device != new_values.device:
|
|
# Update the nested int registry to indicate that the ragged structure is the same
|
|
# between the two offsets / lengths on different devices.
|
|
from torch._subclasses.fake_tensor import FakeTensor
|
|
from torch._subclasses.functional_tensor import (
|
|
FunctionalTensor,
|
|
mb_unwrap_functional_tensor,
|
|
)
|
|
|
|
from .nested_tensor import _tensor_symint_registry
|
|
|
|
ragged_source = inp._offsets if inp._lengths is None else inp._lengths
|
|
new_thing = new_offsets if new_lengths is None else new_lengths
|
|
if isinstance(new_thing, (FakeTensor, FunctionalTensor)):
|
|
# Temporary hack until we have the union find
|
|
tgt = mb_unwrap_functional_tensor(new_thing)
|
|
src = mb_unwrap_functional_tensor(ragged_source)
|
|
tgt.nested_int_memo = src.nested_int_memo
|
|
else:
|
|
_tensor_symint_registry[new_thing] = _tensor_symint_registry[ragged_source]
|
|
|
|
return NestedTensor(new_values, **output_kwargs)
|
|
|
|
|
|
register_jagged_func(torch.ops.aten.full_like.default, "self: jt_all, fill_value: any")(
|
|
like_factory_default
|
|
)
|
|
|
|
register_jagged_func(torch.ops.aten.randint_like.default, "self: jt_all, high: any")(
|
|
like_factory_default
|
|
)
|
|
|
|
register_jagged_func(
|
|
torch.ops.aten.randint_like.low_dtype, "self: jt_all, low: any, high: any"
|
|
)(like_factory_default)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.zero_.default, "self: jt_all")
|
|
def zero__default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
func(inp._values)
|
|
return inp
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten._softmax.default, "self: jt_all, dim: any, half_to_float: any"
|
|
)
|
|
def _softmax_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
if isinstance(new_kwargs["dim"], tuple):
|
|
raise RuntimeError(
|
|
"softmax(): not supported for dimensions of type 'tuple' for NestedTensor"
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
(
|
|
new_kwargs["dim"],
|
|
reduce_on_batch,
|
|
reduce_on_ragged,
|
|
_reduce_on_non_batch,
|
|
) = _wrap_jagged_dims(
|
|
inp.dim(),
|
|
(new_kwargs["dim"],),
|
|
"softmax",
|
|
inp._ragged_idx,
|
|
)
|
|
|
|
if reduce_on_batch:
|
|
raise RuntimeError(
|
|
"softmax(): not supported when reducing across the batch dimension for NestedTensor"
|
|
)
|
|
|
|
if reduce_on_ragged and inp._ragged_idx > 1:
|
|
raise RuntimeError(
|
|
"softmax(): not supported when reducing along the ragged dimension for ragged_idx > 1 for NestedTensor"
|
|
)
|
|
|
|
if reduce_on_ragged and inp._lengths is not None:
|
|
raise RuntimeError(
|
|
"softmax(): not supported where lengths is not None "
|
|
+ "if reducing across the ragged dimension for NestedTensor"
|
|
)
|
|
|
|
new_kwargs["dim"] = new_kwargs["dim"][
|
|
0
|
|
] # torch.softmax takes in the reduction dimension as an integer
|
|
|
|
if reduce_on_ragged:
|
|
padded_softmax_values = torch.nn.functional.softmax(
|
|
torch.ops.aten._jagged_to_padded_dense_forward(
|
|
inp._values.reshape(
|
|
inp._values.shape[0], -1
|
|
), # values are required to be 2D tensors for j2pd
|
|
[inp._offsets],
|
|
max_lengths=[inp._max_seqlen], # max length of ragged dimension
|
|
padding_value=float("-inf"), # e^-inf = 0
|
|
),
|
|
dim=inp._ragged_idx,
|
|
)
|
|
|
|
softmax_values = torch.ops.aten._padded_dense_to_jagged_forward(
|
|
padded_softmax_values,
|
|
[inp._offsets],
|
|
total_L=inp._values.shape[
|
|
0
|
|
], # providing this parameter helps avoid a GPU/CPU sync
|
|
).reshape(
|
|
-1, *inp._values.shape[1:]
|
|
) # expand softmax_values back to original shape (inp._values.shape)
|
|
|
|
return NestedTensor(softmax_values, **extract_kwargs(inp))
|
|
|
|
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten._softmax_backward_data.default,
|
|
"grad_output: jt, output: jt, dim: any, input_dtype: any",
|
|
)
|
|
def _softmax_backward(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
grad_out = new_kwargs.pop("grad_output")
|
|
output = new_kwargs.pop("output")
|
|
return NestedTensor(
|
|
func(grad_out._values, output._values, **new_kwargs), **extract_kwargs(grad_out)
|
|
)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.native_dropout.default, "self: jt, float: any, train: any?"
|
|
)
|
|
def native_dropout_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
out1, out2 = func(inp._values, **new_kwargs)
|
|
return (
|
|
NestedTensor(out1, **extract_kwargs(inp)),
|
|
NestedTensor(out2, **extract_kwargs(inp)),
|
|
)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.native_dropout_backward.default,
|
|
"grad_output: jt, mask: jt, scale: any",
|
|
)
|
|
def native_dropout_backward_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
grad_output = new_kwargs.pop("grad_output")
|
|
mask = new_kwargs.pop("mask")
|
|
return NestedTensor(
|
|
func(grad_output._values, mask._values, **new_kwargs),
|
|
**extract_kwargs(grad_output),
|
|
)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.prod.dim_int,
|
|
"self: jt_all, dim: any, keepdim: any?, dtype: any?",
|
|
)
|
|
def prod_dim_int(func, *args, **kwargs):
|
|
return _apply_reduction(func, "prod", 1, *args, **kwargs)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.prod.default, "self: jt_all, dtype: any?")
|
|
def prod_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
return func(inp._values, **new_kwargs)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.split.Tensor, "self: jt, split_size: any, dim: any?"
|
|
)
|
|
def split_tensor(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
new_kwargs["dim"] = _wrap_jagged_dim(
|
|
inp.dim(), new_kwargs["dim"], inp._ragged_idx, "split"
|
|
)
|
|
|
|
return tuple(
|
|
NestedTensor(values=x, **extract_kwargs(inp))
|
|
for x in func(inp._values, **new_kwargs)
|
|
)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.split_with_sizes.default, "self: jt, split_sizes: any, dim: any?"
|
|
)
|
|
def split_with_sizes_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
new_kwargs["dim"] = _wrap_jagged_dim(
|
|
inp.dim(), new_kwargs["dim"], inp._ragged_idx, "split_with_sizes"
|
|
)
|
|
|
|
return [
|
|
NestedTensor(values=x, **extract_kwargs(inp))
|
|
for x in func(inp._values, **new_kwargs)
|
|
]
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.narrow.default, "self: jt, dim: any, start: any, length: any"
|
|
)
|
|
def narrow(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
inp = new_kwargs.pop("input")
|
|
|
|
dim = _wrap_jagged_dim(inp.dim(), new_kwargs["dim"], inp._ragged_idx, "narrow")
|
|
values = func(
|
|
inp._values,
|
|
dim=dim,
|
|
start=new_kwargs["start"],
|
|
length=new_kwargs["length"],
|
|
)
|
|
return NestedTensor(values, **extract_kwargs(inp))
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.chunk.default, "self: jt, chunks: any, dim: any?")
|
|
def chunk_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
new_kwargs["dim"], operating_on_batch = _wrap_jagged_dim(
|
|
inp.dim(), new_kwargs["dim"], inp._ragged_idx, "chunk", allow_batch_dim=True
|
|
)
|
|
|
|
if operating_on_batch:
|
|
chunks = new_kwargs["chunks"]
|
|
|
|
# get _offsets of the chunks
|
|
lengths = inp._offsets.diff()
|
|
chunked_lengths = lengths.chunk(chunks)
|
|
chunked_offsets = [torch.cumsum(x, dim=0) for x in chunked_lengths]
|
|
chunked_offsets = [F.pad(x, (1, 0), value=0) for x in chunked_offsets] # type: ignore[arg-type]
|
|
nested_kwargs = [
|
|
{"offsets": per_offsets, "_ragged_idx": inp._ragged_idx}
|
|
for per_offsets in chunked_offsets
|
|
]
|
|
|
|
# get _values of the chunks
|
|
split_sizes = [x.sum().item() for x in chunked_lengths]
|
|
chunk_values = inp._values.split(split_sizes)
|
|
|
|
# Note that the actual number of chunks returned is not necessarily the same as
|
|
# the input number; it can be counter-intuitive, but it matches dense behavior.
|
|
return [
|
|
NestedTensor(values=chunk_values[i], **(nested_kwargs[i]))
|
|
for i in range(0, len(chunk_values))
|
|
]
|
|
else:
|
|
return [
|
|
NestedTensor(values=x, **extract_kwargs(inp))
|
|
for x in func(inp._values, **new_kwargs)
|
|
]
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.unbind.int, "self: jt_all, dim: any?")
|
|
def unbind_int(func, *args, **kwargs):
|
|
# Note that this specializes on the length of the offsets
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
dim = new_kwargs["dim"]
|
|
if dim != 0:
|
|
raise RuntimeError("unbind(): only supported for NestedTensor on dim=0")
|
|
|
|
inp = new_kwargs.pop("input")
|
|
values = inp.values()
|
|
offsets = inp.offsets()
|
|
lengths = inp.lengths()
|
|
ragged_idx = inp._ragged_idx
|
|
|
|
def _torch_check(_lengths: list[int], _offsets: Optional[list[int]] = None):
|
|
# This torch._check and torch._check_is_size are needed for torch.compile
|
|
# symbolic shapes processing.
|
|
# offsets and lengths are symbolic variables during compilation,
|
|
# we guarantee the correct offsets/lengths correspondence:
|
|
# sum of lengths <= total ragged_dim_size
|
|
# every length and offset are size-like variable (allows sym shapes to reason it as [2, inf))
|
|
# offset[i] + length[i] <= ragged_dim_size, for unbind and split dim correctness
|
|
# offsets[i] <= ragged_dim_size
|
|
|
|
lengths_sum = 0
|
|
ragged_dim_size = values.shape[ragged_idx - 1]
|
|
for i in range(len(_lengths)):
|
|
torch._check_is_size(_lengths[i])
|
|
torch._check(_lengths[i] <= ragged_dim_size)
|
|
|
|
lengths_sum += _lengths[i]
|
|
if _offsets is not None:
|
|
torch._check(
|
|
_offsets[i] + _lengths[i] <= ragged_dim_size,
|
|
lambda: "unbind(): nested tensor offsets and lengths do not match ragged_idx dimension",
|
|
)
|
|
torch._check(lengths_sum <= ragged_dim_size)
|
|
|
|
if _offsets is not None:
|
|
for i in range(len(_offsets)):
|
|
torch._check_is_size(_offsets[i])
|
|
torch._check(_offsets[i] <= ragged_dim_size)
|
|
|
|
if lengths is None:
|
|
lengths_scalars = offsets.diff().tolist()
|
|
_torch_check(lengths_scalars)
|
|
|
|
return torch.split(values, lengths_scalars, dim=(ragged_idx - 1))
|
|
|
|
if ragged_idx <= 0:
|
|
raise RuntimeError(
|
|
"unbind(): nested tensor ragged_idx out of bounds (should be >= 1)"
|
|
)
|
|
|
|
lengths_scalars = lengths.tolist()
|
|
offsets_scalars = offsets.tolist()
|
|
|
|
_torch_check(lengths_scalars, offsets_scalars)
|
|
|
|
return [
|
|
torch.narrow(
|
|
values,
|
|
dim=(ragged_idx - 1),
|
|
start=offsets_scalars[i],
|
|
length=lengths_scalars[i],
|
|
)
|
|
for i in range(lengths.shape[0])
|
|
]
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.squeeze.dim, "self: jt, dim: any")
|
|
def squeeze_dim(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
values = inp._values
|
|
|
|
new_kwargs["dim"] = _wrap_jagged_dim(
|
|
len(inp._size), new_kwargs["dim"], inp._ragged_idx, "squeeze"
|
|
)
|
|
return NestedTensor(func(values, **new_kwargs), **extract_kwargs(inp))
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.unsqueeze.default, "self: jt_all, dim: any")
|
|
def unsqueeze_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
values = inp._values
|
|
|
|
# Account for collapsed jagged dim
|
|
dim = new_kwargs["dim"]
|
|
new_kwargs["dim"] = _wrap_jagged_dim(
|
|
len(inp._size) + 1, dim, inp._ragged_idx, "unsqueeze", allow_ragged_dim=True
|
|
)
|
|
|
|
# ragged_idx changes if a dimension is added before it
|
|
output_kwargs = extract_kwargs(inp)
|
|
if new_kwargs["dim"] <= inp._ragged_idx - 1:
|
|
output_kwargs["_ragged_idx"] += 1
|
|
|
|
return NestedTensor(func(values, **new_kwargs), **output_kwargs)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.cat.default, "tensors: any, dim: any")
|
|
def cat_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
tensors = new_kwargs.pop("tensors")
|
|
|
|
# Convert any non-nested to nested
|
|
nested = [t for t in tensors if t.is_nested]
|
|
assert len(nested) > 0
|
|
first = nested[0]
|
|
tensors = [t if t.is_nested else t.expand_as(first) for t in tensors]
|
|
|
|
# Account for collapsed jagged dim
|
|
dim = new_kwargs["dim"]
|
|
new_kwargs["dim"] = _wrap_jagged_dim(
|
|
len(first.shape), dim, first._ragged_idx, "cat"
|
|
)
|
|
|
|
return NestedTensor(
|
|
func([t._values for t in tensors], **new_kwargs), **extract_kwargs(tensors[0])
|
|
)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.matmul.default, "self: any, other: any")
|
|
def matmul_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
other = new_kwargs.pop("other")
|
|
|
|
def _unbind_impl(a, b):
|
|
return [
|
|
func(a_comp, b_comp) for (a_comp, b_comp) in zip(a.unbind(), b.unbind())
|
|
]
|
|
|
|
def _padded_impl(a, b):
|
|
if a.is_nested:
|
|
nt = a
|
|
else:
|
|
nt = b
|
|
|
|
from .nested_tensor import nested_from_padded
|
|
|
|
min_seqlen = nt._maybe_min_seqlen
|
|
max_seqlen = nt._maybe_max_seqlen
|
|
padded_max_S = max_seqlen
|
|
total_L = nt._values.shape[nt._ragged_idx - 1]
|
|
if padded_max_S is None:
|
|
# use upper bound on max seqlen if it's not present
|
|
padded_max_S = total_L
|
|
|
|
padded_shape = (
|
|
*nt.shape[: nt._ragged_idx],
|
|
padded_max_S,
|
|
*nt.shape[nt._ragged_idx + 1 :],
|
|
)
|
|
padded_nt = nt.to_padded_tensor(0.0, output_size=padded_shape)
|
|
if a.is_nested:
|
|
padded_t = func(padded_nt, b)
|
|
else:
|
|
padded_t = func(a, padded_nt)
|
|
return nested_from_padded(
|
|
padded_t,
|
|
offsets=nt._offsets,
|
|
ragged_idx=nt._ragged_idx,
|
|
sum_S=total_L,
|
|
min_seqlen=min_seqlen,
|
|
max_seqlen=max_seqlen,
|
|
)
|
|
|
|
# TODO: Back these with proper kernels (e.g. grouped GEMM)
|
|
# NJT x dense
|
|
if inp.is_nested and not other.is_nested:
|
|
# (B, j1, D) x (B, D, E) => (B, j1, E)
|
|
if (
|
|
inp.dim() >= 3
|
|
and inp.dim() == other.dim()
|
|
and inp._ragged_idx < inp.dim() - 1
|
|
):
|
|
# convert to padded for this
|
|
return _padded_impl(inp, other)
|
|
# Support broadcasting the dense:
|
|
# (B, j1, D) x (D, E) => (B, j1, E)
|
|
# (B, j1, D, E) x (E, F) => (B, j1, D, F)
|
|
# etc.
|
|
elif (
|
|
other.dim() == 2
|
|
and inp.dim() > other.dim()
|
|
and inp._ragged_idx < inp.dim() - 1
|
|
):
|
|
return NestedTensor(
|
|
func(inp._values, other, **new_kwargs), **extract_kwargs(inp)
|
|
)
|
|
# Dense x NJT
|
|
elif not inp.is_nested and other.is_nested:
|
|
# (B, D, E) x (B, E, j1) => (B, E, j1)
|
|
if other.dim() >= 3 and other.dim() == inp.dim() and other._ragged_idx >= 2:
|
|
# convert to padded for this
|
|
return _padded_impl(inp, other)
|
|
# Support broadcasting the dense:
|
|
# (D, E) x (B, E, j1) => (B, D, j1)
|
|
# (D, E) x (B, E, j1, F) => (B, D, j1, F)
|
|
# etc.
|
|
elif inp.dim() == 2 and other.dim() > inp.dim() and other._ragged_idx >= 2:
|
|
return NestedTensor(
|
|
func(inp, other._values, **new_kwargs), **extract_kwargs(other)
|
|
)
|
|
|
|
# NJT x NJT
|
|
elif inp.is_nested and other.is_nested:
|
|
# Support ragged batch dim:
|
|
# (B, j1, D, E) x (B, j1, E, F) => (B, j1, D, F), etc.
|
|
if inp.dim() > 3 and other.dim() > 3 and raggedness_matches(inp, other._size):
|
|
return NestedTensor(func(inp._values, other._values), **extract_kwargs(inp))
|
|
# Support reducing over ragged with dense output:
|
|
# (B, D, j1) x (B, j1, E) => (B, D, E)
|
|
elif (
|
|
inp.dim() == 3
|
|
and other.dim() == 3
|
|
and inp._ragged_idx == 2
|
|
and other._ragged_idx == 1
|
|
and inp.size(inp._ragged_idx) == other.size(other._ragged_idx)
|
|
):
|
|
# do unbind for this; can't use padded conversion due to j1 in last dim
|
|
return torch.stack(_unbind_impl(inp, other))
|
|
|
|
raise RuntimeError(
|
|
f"matmul(): not supported between inputs of shapes {inp._size} and {other.shape}"
|
|
)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.bmm.default, "self: jt_all, mat2: any")
|
|
def bmm_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
other = new_kwargs.pop("mat2")
|
|
|
|
if inp.dim() != 3:
|
|
raise ValueError("bmm(): input must be 3D")
|
|
if other.dim() != 3:
|
|
raise ValueError("bmm(): mat2 must be 3D")
|
|
|
|
return matmul_default(torch.ops.aten.matmul.default, inp, other)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.expand.default, "self: jt_all, size: any, implicit: any?"
|
|
)
|
|
def expand_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
size = new_kwargs["size"]
|
|
|
|
assert ("implicit" not in new_kwargs) or (not new_kwargs.pop("implicit"))
|
|
if not raggedness_matches(inp, size):
|
|
raise RuntimeError(f"expand(): cannot expand shape {inp._size} -> {size}")
|
|
|
|
expand_arg = [-1 if d == inp._ragged_idx else size[d] for d in range(1, inp.dim())]
|
|
return NestedTensor(func(inp._values, expand_arg), **extract_kwargs(inp))
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.expand_as.default, "self: t, other: jt")
|
|
def expand_as_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
other = new_kwargs.pop("other")
|
|
|
|
return NestedTensor(func(inp, other._values), **extract_kwargs(other))
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.broadcast_to.default, "self: jt_all, size: any")
|
|
def broadcast_to(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
size = new_kwargs.pop("size")
|
|
|
|
if len(size) <= inp.dim():
|
|
return inp.expand([*(1 for _ in range(inp.dim() - len(size))), *size])
|
|
|
|
raise ValueError(
|
|
"broadcast_to(): broadcasting to a higher-dim shape is currently not supported "
|
|
"for nested tensors with the jagged layout"
|
|
)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.broadcast_tensors.default, "tensors: any")
|
|
def broadcast_tensors(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
tensors = new_kwargs.pop("tensors")
|
|
if len(tensors) == 0:
|
|
raise ValueError("broadcast_tensors(): expected at least one tensor input")
|
|
if len(tensors) == 1:
|
|
return tensors[0]
|
|
|
|
outs = []
|
|
broadcast_shape = torch.broadcast_shapes(*(t.shape for t in tensors))
|
|
# Pull out the first NJT. If broadcast_shapes() worked, the nested ints are compatible.
|
|
njt = next(t for t in tensors if isinstance(t, NestedTensor))
|
|
for t in tensors:
|
|
if t.is_nested:
|
|
outs.append(t.broadcast_to(broadcast_shape))
|
|
elif t.dim() < len(broadcast_shape):
|
|
outs.append(
|
|
NestedTensor(t.broadcast_to(njt._values.shape), **extract_kwargs(njt))
|
|
)
|
|
else:
|
|
raise ValueError(
|
|
"broadcast_tensors(): broadcasting nested tensors with dense tensors of equal "
|
|
"or higher dim is not currently supported"
|
|
)
|
|
|
|
return tuple(outs)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.where.self, "condition: jt_all, self: any, other: any"
|
|
)
|
|
def where_self(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
condition = new_kwargs.pop("condition")
|
|
inp = new_kwargs.pop("input")
|
|
other = new_kwargs.pop("other")
|
|
|
|
# if the tensors aren't compatible, broadcast_tensors() will let us know
|
|
condition, inp, other = torch.broadcast_tensors(condition, inp, other)
|
|
|
|
return NestedTensor(
|
|
func(condition._values, inp._values, other._values, **new_kwargs),
|
|
**extract_kwargs(condition),
|
|
)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten._pin_memory.default, "self: jt, device: any?")
|
|
def _pin_memory_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.is_pinned.default, "self: jt, device: any?")
|
|
def is_pinned_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
return func(inp._values, **new_kwargs)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.is_same_size.default, "self: jt_all, other: jt_all"
|
|
)
|
|
def is_same_size_default(func, *args, **kwargs):
|
|
return args[0]._size == args[1]._size
|
|
|
|
|
|
def _apply_reduction(func, func_name, identity_element, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
# some ops use dim=None to indicate a full reduction; some use an empty dim list
|
|
full_reduction = new_kwargs["dim"] is None or (
|
|
isinstance(new_kwargs["dim"], (tuple, list)) and len(new_kwargs["dim"]) == 0
|
|
)
|
|
if full_reduction:
|
|
out = func(inp._values, **new_kwargs)
|
|
if new_kwargs.get("keepdim", False):
|
|
if isinstance(out, (tuple, list)):
|
|
# some ops return multiple things; unsqueeze all of them
|
|
out = type(out)(o.unsqueeze(inp._ragged_idx) for o in out)
|
|
else:
|
|
out = out.unsqueeze(inp._ragged_idx)
|
|
return out
|
|
|
|
# some ops support lists of dims; some don't
|
|
dim_to_convert = new_kwargs["dim"]
|
|
is_dimlist = isinstance(new_kwargs["dim"], (tuple, list))
|
|
if not is_dimlist:
|
|
dim_to_convert = [dim_to_convert]
|
|
|
|
(
|
|
converted_dim,
|
|
reduce_on_batch,
|
|
reduce_on_ragged,
|
|
reduce_on_non_batch,
|
|
) = _wrap_jagged_dims(
|
|
inp.dim(),
|
|
dim_to_convert,
|
|
f"{func_name}",
|
|
inp._ragged_idx,
|
|
)
|
|
|
|
if not is_dimlist:
|
|
# convert back from list
|
|
converted_dim = converted_dim[0]
|
|
new_kwargs["dim"] = converted_dim
|
|
|
|
if reduce_on_ragged and inp._lengths is not None:
|
|
raise RuntimeError(
|
|
f"{func_name}(): reducing across the ragged dimension is not supported "
|
|
"for non-contiguous nested tensors with holes"
|
|
)
|
|
|
|
from torch.utils._pytree import tree_map
|
|
|
|
# raggedness reduced away --> return dense tensor
|
|
if reduce_on_ragged:
|
|
# reduction cases: (batch, ragged), (batch, ragged, non-batch), etc.
|
|
if reduce_on_batch:
|
|
# no need to read offsets --> apply sum directly on values
|
|
out = func(inp._values, **new_kwargs)
|
|
if new_kwargs.get("keepdim", False):
|
|
# some ops return multiple things; unsqueeze all of them
|
|
out = tree_map(lambda o: o.unsqueeze(0), out)
|
|
return out
|
|
else:
|
|
# invalid reduction cases: (ragged, non-batch), etc.
|
|
if reduce_on_non_batch:
|
|
raise RuntimeError(
|
|
f"{func_name}(): reducing along a ragged and non-batch dimension "
|
|
"is not supported for nested tensors"
|
|
)
|
|
|
|
# reduction cases: (ragged)
|
|
# convert to padded dense and reduce
|
|
new_kwargs.pop("dim")
|
|
dim_to_pass = [inp._ragged_idx] if is_dimlist else inp._ragged_idx
|
|
return func(
|
|
inp.to_padded_tensor(identity_element), dim=dim_to_pass, **new_kwargs
|
|
)
|
|
# raggedness preserved --> return nested tensor
|
|
else:
|
|
# invalid reduction cases: (batch), (batch, non-batch), etc.
|
|
if reduce_on_batch:
|
|
raise RuntimeError(
|
|
f"{func_name}(): reducing along the batch dimension but not "
|
|
"the ragged dimension is not supported for nested tensors"
|
|
)
|
|
|
|
# reduction cases: (non-batch), (non-batch, non-batch), etc.
|
|
# apply sum directly on values
|
|
out = func(inp._values, **new_kwargs)
|
|
out_kwargs = extract_kwargs(inp)
|
|
if not new_kwargs.get("keepdim", False):
|
|
# dims are reduced away -> ragged_idx of output needs to be reevaluated
|
|
dimlist = (
|
|
new_kwargs["dim"]
|
|
if isinstance(new_kwargs["dim"], (tuple, list))
|
|
else [new_kwargs["dim"]]
|
|
)
|
|
for d in dimlist:
|
|
# adjust for all dims reduced before the ragged dim
|
|
if d < inp._ragged_idx - 1:
|
|
out_kwargs["_ragged_idx"] -= 1
|
|
|
|
# some ops return multiple things; wrap each of them as an NJT
|
|
return tree_map(lambda o: NestedTensor(o, **out_kwargs), out)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.sum.default, "self: jt_all, dtype: any?")
|
|
def sum_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
return func(inp._values, **new_kwargs)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.sum.dim_IntList,
|
|
"self: jt_all, dim: any?, keepdim: any?, dtype: any?",
|
|
)
|
|
def sum_dim_IntList(func, *args, **kwargs):
|
|
return _apply_reduction(func, "sum", 0, *args, **kwargs)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.transpose.int, "self: jt_all, dim0: any, dim1: any"
|
|
)
|
|
def transpose_int(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
from torch._prims_common import canonicalize_dims
|
|
|
|
inp = new_kwargs.pop("input")
|
|
dim0, dim1 = canonicalize_dims(inp.dim(), (new_kwargs["dim0"], new_kwargs["dim1"]))
|
|
|
|
# To support the SDPA API, inputs need to have the ragged idx transposed to dim 2
|
|
# instead of 1, although the internal Flash and mem-effn implementations will
|
|
# use the inputs with raggedness in dim 1.
|
|
if dim0 == inp._ragged_idx or dim1 == inp._ragged_idx:
|
|
if dim0 == 0 or dim1 == 0:
|
|
raise ValueError(
|
|
"Transpose is not supported on the batch dimension for jagged NT"
|
|
)
|
|
if dim0 == inp._ragged_idx:
|
|
to_dim = dim1
|
|
else:
|
|
to_dim = dim0
|
|
inp_kwargs = extract_kwargs(inp)
|
|
inp_kwargs["_ragged_idx"] = to_dim
|
|
return NestedTensor(
|
|
inp.values().transpose(
|
|
_outer_to_inner_dim(len(inp._size), dim0, inp._ragged_idx),
|
|
_outer_to_inner_dim(len(inp._size), dim1, inp._ragged_idx),
|
|
),
|
|
**inp_kwargs,
|
|
)
|
|
|
|
new_kwargs["dim0"] = _wrap_jagged_dim(
|
|
inp.dim(), new_kwargs["dim0"], inp._ragged_idx, "transpose"
|
|
)
|
|
new_kwargs["dim1"] = _wrap_jagged_dim(
|
|
inp.dim(), new_kwargs["dim1"], inp._ragged_idx, "transpose"
|
|
)
|
|
|
|
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.permute.default, "self: jt_all, dims: any")
|
|
def permute_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
inp = new_kwargs.pop("input")
|
|
dims = new_kwargs.pop("dims")
|
|
inp_kwargs = extract_kwargs(inp)
|
|
inp_dim = len(inp._size)
|
|
|
|
# The first two checks are the same as the checks in the normal permute implementation
|
|
if inp_dim != len(dims):
|
|
raise ValueError(
|
|
f"permute(): number of dimensions in the tensor input ({inp_dim}) "
|
|
+ f"does not match the length of the desired ordering of dimensions ({len(dims)}).",
|
|
)
|
|
|
|
from torch._prims_common import canonicalize_dims
|
|
|
|
canonicalized_dims = canonicalize_dims(inp_dim, dims)
|
|
|
|
if len(canonicalized_dims) != len(set(canonicalized_dims)):
|
|
raise ValueError("permute(): duplicate dims are not allowed.")
|
|
|
|
if inp._lengths is not None:
|
|
raise ValueError(
|
|
"permute(): not supported on jagged layout nested tensor with holes"
|
|
)
|
|
if canonicalized_dims[0] != 0:
|
|
raise ValueError(
|
|
"Permute is not supported on the batch dimension for jagged NT"
|
|
)
|
|
inp_kwargs["_ragged_idx"] = canonicalized_dims.index(inp._ragged_idx)
|
|
inner_dims = [
|
|
_outer_to_inner_dim(inp_dim, dim, inp._ragged_idx)
|
|
for dim in canonicalized_dims[1:]
|
|
]
|
|
new_kwargs["dims"] = inner_dims
|
|
return NestedTensor(func(inp._values, **new_kwargs), **inp_kwargs)
|
|
|
|
|
|
@register_jagged_func(
|
|
[torch.ops.aten.view.default, torch.ops.aten._unsafe_view.default],
|
|
"self: jt_all, size: any",
|
|
)
|
|
def view_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
size = new_kwargs.pop("size")
|
|
|
|
if inp._ragged_idx != 1 and tuple(inp._size) != tuple(size):
|
|
raise RuntimeError(
|
|
f"view(): does not support ragged_idx != 1 except when inp._size == size. "
|
|
f"inp._size is ({inp._size}) and size is ({size})."
|
|
)
|
|
|
|
# Ensure specified size still includes batch and ragged dims
|
|
if len(size) < 3 or not raggedness_matches(inp, size):
|
|
raise RuntimeError(f"view(): cannot view shape {inp._size} as {size}")
|
|
|
|
# outer size: the size of the NT, e.g. [3, j0, 10]
|
|
# inner size: the size of the values, e.g. [8, 10] (e.g. for offsets = [0, 3, 5, 8])
|
|
# this function gets inner_size[inner_idx] for a given inner_idx.
|
|
#
|
|
# example: for outer size [a, b, c, j0, d, e, f]
|
|
# assume that j0 is ragged, other are concrete integers
|
|
# and ragged_idx=3
|
|
# inner size will be [b, c, inp._values.size(ragged_idx), d, e, f]
|
|
# therefore:
|
|
# inner_size[0] = outer_size[1]
|
|
# inner_size[1] = outer_size[2]
|
|
# inner_size[0] = inp._values.size(ragged_idx - 1)
|
|
# inner_size[3] = outer_size[4]
|
|
# inner_size[4] = outer_size[5]
|
|
def get_inner_size(inner_idx):
|
|
nonlocal inp, size
|
|
if inner_idx == inp._ragged_idx - 1:
|
|
return inp._values.size(inner_idx)
|
|
else:
|
|
return size[inner_idx + 1]
|
|
|
|
inner_size = [get_inner_size(i) for i in range(len(size) - 1)]
|
|
|
|
# Preserve inference-mode-ness of input.
|
|
# TODO: Do this for all other views!
|
|
with torch.inference_mode(inp.is_inference()):
|
|
return NestedTensor(func(inp._values, inner_size), **extract_kwargs(inp))
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.native_layer_norm.default,
|
|
"input: jt_all, normalized_shape: any, weight: any?, bias: any?, eps: any",
|
|
)
|
|
def native_layer_norm_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
if inp.dim() <= 2:
|
|
raise RuntimeError(
|
|
"layer_norm(): not supported for NestedTensor objects with 2 or fewer dimensions"
|
|
)
|
|
|
|
normalized_shape = new_kwargs["normalized_shape"]
|
|
ragged_size = inp.shape[inp._ragged_idx]
|
|
|
|
num_dims_not_normalized = inp.dim() - len(normalized_shape)
|
|
|
|
if (
|
|
num_dims_not_normalized == 0
|
|
): # error if trying to normalize over the batch dimension
|
|
raise RuntimeError(
|
|
"layer_norm(): not supported when normalizing over the batch dimension for NestedTensor"
|
|
)
|
|
|
|
if ragged_size in normalized_shape and inp._lengths is not None:
|
|
raise RuntimeError(
|
|
"layer_norm(): not supported where lengths is not None if operating on the ragged dimension for NestedTensor"
|
|
)
|
|
|
|
if (
|
|
ragged_size in normalized_shape
|
|
): # special handling for normalizing over the ragged dimension
|
|
padded_input = torch.ops.aten._jagged_to_padded_dense_forward(
|
|
inp._values.flatten(
|
|
start_dim=inp._ragged_idx
|
|
), # _jagged_to_padded_dense_forward requires values to be a 2D tensor
|
|
[inp._offsets],
|
|
max_lengths=[inp._max_seqlen], # max length of ragged dimension
|
|
)
|
|
|
|
padded_mask = torch.ops.aten._jagged_to_padded_dense_forward(
|
|
torch.ones((inp._values.shape[0], 1), device=inp.device, dtype=inp.dtype),
|
|
[inp._offsets],
|
|
max_lengths=[inp._max_seqlen], # max length of ragged dimension
|
|
).expand(
|
|
padded_input.shape
|
|
) # mask elements outside of the ragged dimension and expand to the same shape as padded input (3D dense tensor)
|
|
|
|
ragged_lengths = (
|
|
inp._offsets.diff().unsqueeze(1).unsqueeze(1) * padded_input.shape[2]
|
|
) # ragged dim * inner dim, since we sum over dims (1, 2) (the layer on which we normalize)
|
|
|
|
mean = (
|
|
torch.sum(
|
|
padded_input,
|
|
dim=(1, 2),
|
|
keepdim=True,
|
|
)
|
|
/ ragged_lengths
|
|
) # a sum over (1, 2) ensures layer norm, whereas a sum over (1) would be an instance norm
|
|
|
|
padded_normalized = (
|
|
padded_input - mean
|
|
) * padded_mask # mask elements outside of the ragged dimension size for correct variance calculation
|
|
|
|
variance = (
|
|
torch.sum(
|
|
torch.square(padded_normalized),
|
|
dim=(1, 2),
|
|
keepdim=True,
|
|
)
|
|
/ ragged_lengths
|
|
) # a sum over (1, 2) ensures layer norm, whereas a sum over (1) would be an instance norm
|
|
|
|
std = torch.sqrt(variance + new_kwargs["eps"])
|
|
padded_layer_norm = padded_normalized / std
|
|
|
|
jagged_layer_norm_values = torch.ops.aten._padded_dense_to_jagged_forward(
|
|
padded_layer_norm,
|
|
[inp._offsets],
|
|
total_L=inp._values.shape[
|
|
0
|
|
], # providing this parameter helps avoid a GPU/CPU sync
|
|
).unflatten(
|
|
-1, inp.shape[inp._ragged_idx + 1 :]
|
|
) # unflatten last dimension back into original nested tensor shape, e.g. (B, *, WH) --> (B, *, W, H)
|
|
|
|
return (
|
|
NestedTensor(jagged_layer_norm_values, **extract_kwargs(inp)),
|
|
mean,
|
|
std,
|
|
)
|
|
|
|
output, mean, std = func(inp._values, **new_kwargs)
|
|
return (NestedTensor(output, **extract_kwargs(inp)), mean, std)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.native_layer_norm_backward.default,
|
|
"grad_out: jt, input: jt, normalized_shape: any, mean: any, rstd: any, weight: any?, bias: any?, output_mask: any",
|
|
)
|
|
def native_layer_norm_backward_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
grad_out = new_kwargs.pop("grad_out")
|
|
inp = new_kwargs.pop("input")
|
|
d_input, d_gamma, d_beta = func(grad_out._values, inp._values, **new_kwargs)
|
|
if d_input is None:
|
|
return (None, d_gamma, d_beta)
|
|
|
|
return (NestedTensor(d_input, **extract_kwargs(inp)), d_gamma, d_beta)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.select.int, "self: jt_all, dim: any, index: any")
|
|
def select_int(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
new_kwargs["dim"], operating_on_batch = _wrap_jagged_dim(
|
|
inp.dim(), new_kwargs["dim"], inp._ragged_idx, "select", allow_batch_dim=True
|
|
)
|
|
|
|
# handle batch dim slicing via unbind() for now
|
|
# TODO: make this more efficient
|
|
if operating_on_batch:
|
|
return inp.unbind()[new_kwargs["index"]]
|
|
|
|
if inp._lengths is not None:
|
|
raise ValueError(
|
|
"select(): not yet supported on dim != 0 for non-contiguous nested tensor with holes"
|
|
)
|
|
|
|
# if selecting before the ragged dim, adjust output ragged_idx
|
|
out_kwargs = extract_kwargs(inp)
|
|
if new_kwargs["dim"] < inp._ragged_idx - 1:
|
|
out_kwargs["_ragged_idx"] -= 1
|
|
|
|
return NestedTensor(func(inp._values, **new_kwargs), **out_kwargs)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.slice.Tensor,
|
|
"self: jt, dim: any?, start: any?, end: any?, step: any?",
|
|
)
|
|
def slice_tensor(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
new_kwargs["dim"] = _wrap_jagged_dim(
|
|
inp.dim(), new_kwargs["dim"], inp._ragged_idx, "slice"
|
|
)
|
|
|
|
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.index_put.default,
|
|
"input: jt_all, indices: any, values: t, accumulate: any?",
|
|
)
|
|
@register_jagged_func(
|
|
torch.ops.aten.index_put_.default,
|
|
"input: jt_all, indices: any, values: t, accumulate: any?",
|
|
)
|
|
def index_put_(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp: NestedTensor = new_kwargs.pop("input")
|
|
|
|
# For index_put_ to work, we add together the indices of the ragged dimension
|
|
# and the batch dimension, adding the offsets of each ragged dimension to its
|
|
# indices
|
|
|
|
indices = new_kwargs.pop("indices")
|
|
|
|
assert len(indices) <= inp.dim()
|
|
|
|
if len(indices) < inp._ragged_idx + 1:
|
|
if not inp.is_contiguous():
|
|
raise RuntimeError(
|
|
"index_put(): If ragged dimension is not part of indices, this only works on contiguous NJTs"
|
|
)
|
|
# Ragged dim is NOT part of indices, we need to pad the nested tensor to apply func
|
|
from .nested_tensor import nested_from_padded
|
|
|
|
min_seqlen = inp._maybe_min_seqlen
|
|
max_seqlen = inp._maybe_max_seqlen
|
|
padded_max_S = max_seqlen
|
|
total_L = inp._values.shape[inp._ragged_idx - 1]
|
|
if padded_max_S is None:
|
|
# use upper bound on max seqlen if it's not present
|
|
padded_max_S = total_L
|
|
|
|
padded_shape = (
|
|
*inp.shape[: inp._ragged_idx],
|
|
padded_max_S,
|
|
*inp.shape[inp._ragged_idx + 1 :],
|
|
)
|
|
padded_inp = inp.to_padded_tensor(0.0, output_size=padded_shape)
|
|
new_njt = nested_from_padded(
|
|
func(padded_inp, indices, **new_kwargs),
|
|
offsets=inp._offsets,
|
|
ragged_idx=inp._ragged_idx,
|
|
sum_S=total_L,
|
|
min_seqlen=min_seqlen,
|
|
max_seqlen=max_seqlen,
|
|
)
|
|
|
|
if func == torch.ops.aten.index_put_.default:
|
|
inp._values.copy_(new_njt.values())
|
|
return inp
|
|
return new_njt
|
|
|
|
# We can run on the underlying values directly
|
|
|
|
# Validate indices
|
|
if inp.lengths() is None:
|
|
lengths = inp.offsets().diff()
|
|
else:
|
|
lengths = inp.lengths()
|
|
torch._assert_async(
|
|
torch.all(indices[inp._ragged_idx] < lengths),
|
|
"Some indices in the ragged dimension are out of bounds!",
|
|
)
|
|
|
|
# Recompute indices for _values
|
|
ragged_indices = inp.offsets()[indices[0]] + indices[inp._ragged_idx]
|
|
func_indices = (
|
|
# before ragged dim
|
|
indices[1 : inp._ragged_idx]
|
|
# ragged dim (combined with batch)
|
|
+ [ragged_indices]
|
|
# after ragged dim
|
|
+ indices[inp._ragged_idx + 1 :]
|
|
)
|
|
|
|
if func == torch.ops.aten.index_put_.default:
|
|
inp._values = func(inp._values, func_indices, **new_kwargs)
|
|
return inp
|
|
|
|
return NestedTensor(
|
|
func(inp._values, func_indices, **new_kwargs),
|
|
**extract_kwargs(inp),
|
|
)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.convolution.default,
|
|
"input: jt, weight: t, bias: t?, stride: any, padding: any, "
|
|
"dilation: any, transposed: any, output_padding: any, groups: any",
|
|
)
|
|
def convolution_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.mean.dim, "self: jt_all, dim: any?, keepdim: any?, dtype: any?"
|
|
)
|
|
def mean_dim(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs["input"]
|
|
(_, reduce_on_batch, reduce_on_ragged, reduce_on_non_batch) = _wrap_jagged_dims(
|
|
inp.dim(),
|
|
new_kwargs["dim"],
|
|
"mean",
|
|
inp._ragged_idx,
|
|
)
|
|
|
|
if reduce_on_ragged and not reduce_on_batch:
|
|
assert not reduce_on_non_batch
|
|
# calculate an intermediate sum and leave the dim in for normalization purposes
|
|
keepdim = new_kwargs["keepdim"]
|
|
new_kwargs["keepdim"] = True
|
|
intermediate_sum = _apply_reduction(
|
|
torch.ops.aten.sum.dim_IntList, "mean", 0, **new_kwargs
|
|
)
|
|
|
|
# normalize by sequence lengths
|
|
lengths = inp._lengths if inp._lengths is not None else inp._offsets.diff()
|
|
for _ in range(intermediate_sum.dim() - 1):
|
|
lengths = lengths.unsqueeze(-1)
|
|
out = intermediate_sum / lengths
|
|
if not keepdim:
|
|
out = out.squeeze(inp._ragged_idx)
|
|
return out
|
|
|
|
# at this point, we're just redispatching on the values buffer
|
|
# since we expect it to be unused, specify a weird intermediate value to
|
|
# hopefully make errors obvious
|
|
intermediate_value = 0.42
|
|
return _apply_reduction(func, "mean", intermediate_value, **new_kwargs)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.mean.default, "self: jt_all, dtype: any?")
|
|
def mean_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
return func(inp._values, **new_kwargs)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.any.dims, "self: jt_all, dim: any?, keepdim: any?")
|
|
def any_dims(func, *args, **kwargs):
|
|
return _apply_reduction(func, "any", False, *args, **kwargs)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.any.dim, "self: jt_all, dim: any, keepdim: any?")
|
|
def any_dim(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
# wrap dim in list to redispatch to dims overload
|
|
new_kwargs["dim"] = [new_kwargs["dim"]]
|
|
return any_dims(torch.ops.aten.any.dims, **new_kwargs)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.all.dims, "self: jt_all, dim: any?, keepdim: any?")
|
|
def all_dims(func, *args, **kwargs):
|
|
return _apply_reduction(func, "all", True, *args, **kwargs)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.all.dim, "self: jt_all, dim: any, keepdim: any?")
|
|
def all_dim(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
# wrap dim in list to redispatch to dims overload
|
|
new_kwargs["dim"] = [new_kwargs["dim"]]
|
|
return all_dims(torch.ops.aten.all.dims, **new_kwargs)
|
|
|
|
|
|
@register_jagged_func(
|
|
[
|
|
torch.ops.aten.all.default,
|
|
torch.ops.aten.any.default,
|
|
torch.ops.aten.max.default,
|
|
torch.ops.aten.min.default,
|
|
],
|
|
"self: jt_all",
|
|
)
|
|
def all_any_max_min_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
return func(inp._values, **new_kwargs)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.min.dim, "self: jt_all, dim: any, keepdim: any?")
|
|
def min_dim(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
dtype_max = torch.finfo(new_kwargs["input"].dtype).max
|
|
return _apply_reduction(func, "min", dtype_max, *args, **kwargs)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.max.dim, "self: jt_all, dim: any, keepdim: any?")
|
|
def max_dim(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
dtype_min = torch.finfo(new_kwargs["input"].dtype).min
|
|
return _apply_reduction(func, "max", dtype_min, *args, **kwargs)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.amin.default, "self: jt_all, dim: any?, keepdim: any?"
|
|
)
|
|
def amin_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
dtype_max = torch.finfo(new_kwargs["input"].dtype).max
|
|
return _apply_reduction(func, "amin", dtype_max, *args, **kwargs)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.amax.default, "self: jt_all, dim: any?, keepdim: any?"
|
|
)
|
|
def amax_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
dtype_min = torch.finfo(new_kwargs["input"].dtype).min
|
|
return _apply_reduction(func, "amax", dtype_min, *args, **kwargs)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.argmin.default, "self: jt_all, dim: any?, keepdim: any?"
|
|
)
|
|
def argmin_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
dtype_max = torch.finfo(new_kwargs["input"].dtype).max
|
|
return _apply_reduction(func, "argmin", dtype_max, *args, **kwargs)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.argmax.default, "self: jt_all, dim: any?, keepdim: any?"
|
|
)
|
|
def argmax_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
dtype_min = torch.finfo(new_kwargs["input"].dtype).min
|
|
return _apply_reduction(func, "argmax", dtype_min, *args, **kwargs)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.value_selecting_reduction_backward.default,
|
|
"grad: jt_all, dim: any, indices: jt_all, sizes: any, keepdim: any",
|
|
)
|
|
def value_selecting_reduction_backward_default(func, *args, **kwargs):
|
|
from torch.fx.experimental.symbolic_shapes import is_nested_int
|
|
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
grad = new_kwargs.pop("grad")
|
|
new_kwargs["grad"] = grad._values
|
|
indices = new_kwargs.pop("indices")
|
|
new_kwargs["indices"] = indices._values
|
|
# should always succeed; sizes should contain a nested int
|
|
ragged_idx = next(i for i, s in enumerate(new_kwargs["sizes"]) if is_nested_int(s))
|
|
# convert dim -> values-space dim
|
|
new_kwargs["dim"] = _wrap_jagged_dim(
|
|
len(new_kwargs["sizes"]),
|
|
new_kwargs["dim"],
|
|
ragged_idx,
|
|
"value_selecting_reduction_backward",
|
|
)
|
|
# convert saved NJT sizes -> values-space sizes
|
|
sizes = new_kwargs.pop("sizes")
|
|
sizes[ragged_idx] = indices._values.size(indices._ragged_idx - 1)
|
|
sizes = sizes[1:]
|
|
new_kwargs["sizes"] = sizes
|
|
|
|
output_kwargs = extract_kwargs(indices)
|
|
output_kwargs["_ragged_idx"] = ragged_idx
|
|
|
|
return NestedTensor(func(**new_kwargs), **output_kwargs)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.stack.default, "tensors: any, dim: any")
|
|
def stack_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
# guaranteed this is non-empty if we got here
|
|
tensors = new_kwargs.pop("tensors")
|
|
for t in tensors:
|
|
if not isinstance(t, NestedTensor):
|
|
raise RuntimeError("stack(): expected all nested tensors inputs")
|
|
|
|
if t.dim() != tensors[0].dim():
|
|
raise RuntimeError(
|
|
"stack(): expected all nested tensors to have the same dim"
|
|
)
|
|
|
|
if not raggedness_matches(t, tensors[0].shape):
|
|
raise RuntimeError(
|
|
"stack(): expected all nested tensors to have the same nested structure"
|
|
)
|
|
|
|
new_kwargs["dim"] = _wrap_jagged_dim(
|
|
tensors[0].dim() + 1, new_kwargs["dim"], tensors[0]._ragged_idx, "stack"
|
|
)
|
|
|
|
return NestedTensor(
|
|
func([t._values for t in tensors], **new_kwargs), **extract_kwargs(tensors[0])
|
|
)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.embedding.default,
|
|
"weight: t, indices: jt, padding_idx: any?, scale_grad_by_freq: any?, sparse: any?",
|
|
)
|
|
def embedding_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
# guaranteed this is non-empty if we got here
|
|
indices = new_kwargs.pop("indices")
|
|
weight = new_kwargs.pop("weight")
|
|
|
|
return NestedTensor(
|
|
func(weight, indices._values, **new_kwargs), **extract_kwargs(indices)
|
|
)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.embedding_dense_backward.default,
|
|
"grad_output: jt, indices: jt, num_weights: any, padding_idx: any, scale_grad_by_freq: any",
|
|
)
|
|
def embedding_dense_backward_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
indices = new_kwargs.pop("indices")
|
|
grad_output = new_kwargs.pop("grad_output")
|
|
return func(grad_output._values, indices._values, **new_kwargs)
|
|
|
|
|
|
@register_jagged_func(
|
|
[
|
|
torch.ops.aten.values.default,
|
|
torch.ops.aten._nested_get_values.default,
|
|
],
|
|
"self: jt_all",
|
|
)
|
|
def values_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
# TODO: Handle inference mode properly.
|
|
# See https://github.com/pytorch/pytorch/issues/112024#issuecomment-1779554292
|
|
return inp._values.detach()
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.all.default, "self: jt_all")
|
|
def all_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
return func(inp._values)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.to_padded_tensor.default,
|
|
"self: jt_all, padding: any, output_size: any?",
|
|
)
|
|
def to_padded_tensor_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
if inp._lengths is not None:
|
|
raise RuntimeError(
|
|
"to_padded_tensor(): not supported for nested tensors with holes"
|
|
)
|
|
|
|
# TODO: Handle the rest of output_size
|
|
output_size = new_kwargs["output_size"]
|
|
if output_size is not None:
|
|
max_seq_len = output_size[inp._ragged_idx]
|
|
else:
|
|
max_seq_len = (
|
|
inp._max_seqlen
|
|
if inp._max_seqlen_tensor is not None
|
|
else inp._values.size(0)
|
|
)
|
|
|
|
# only 2D values with ragged packed dim=0 is supported by the underlying FBGEMM
|
|
# kernel so do shape gymnastics if needed
|
|
values = inp.values()
|
|
if inp._ragged_idx > 1:
|
|
values = values.transpose(inp._ragged_idx - 1, 0)
|
|
values_shape = values.shape
|
|
if values.dim() > 2:
|
|
values = values.flatten(start_dim=1)
|
|
elif values.dim() == 1:
|
|
values = values.unsqueeze(-1)
|
|
|
|
# NB: The CUDA kernel for jagged -> padded dense conversion does not support
|
|
# integer / bool types; work around this by casting to half.
|
|
is_bool = values.dtype is torch.bool
|
|
if is_bool and values.is_cuda:
|
|
values = values.to(torch.half)
|
|
padded_out = torch.ops.aten._jagged_to_padded_dense_forward(
|
|
values,
|
|
[inp._offsets],
|
|
[max_seq_len],
|
|
new_kwargs["padding"],
|
|
)
|
|
if is_bool and padded_out.is_cuda:
|
|
padded_out = padded_out.to(torch.bool)
|
|
|
|
# shape gymnastics part 2
|
|
if len(values_shape) > 2:
|
|
padded_out = padded_out.unflatten(-1, values_shape[1:])
|
|
elif len(values_shape) == 1:
|
|
padded_out = padded_out.squeeze(-1)
|
|
if inp._ragged_idx > 1:
|
|
padded_out = padded_out.transpose(inp._ragged_idx, 1)
|
|
|
|
return padded_out
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten._nested_from_padded_tensor.default,
|
|
"padded: t, offsets: t, dummy: jt, ragged_idx: any?, min_seqlen: any?, max_seqlen: any?, sum_S: any?",
|
|
)
|
|
def _nested_from_padded_tensor_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
padded, offsets = new_kwargs["padded"], new_kwargs["offsets"]
|
|
ragged_idx = new_kwargs.get("ragged_idx", 1)
|
|
|
|
# only 3D padded with ragged packed dim=0 is supported by the underlying FBGEMM
|
|
# kernel so do shape gymnastics
|
|
if ragged_idx > 1:
|
|
padded = padded.transpose(ragged_idx, 1)
|
|
padded_ragged_dim1_shape = padded.shape
|
|
if padded.dim() > 3:
|
|
padded = padded.flatten(start_dim=2)
|
|
elif padded.dim() < 3:
|
|
padded = padded.unsqueeze(-1)
|
|
|
|
# NB: The CUDA kernel for padded dense -> jagged conversion does not support
|
|
# integer / bool types; work around this by casting to half.
|
|
is_bool = padded.dtype is torch.bool
|
|
if is_bool and padded.is_cuda:
|
|
padded = padded.to(torch.half)
|
|
values = torch.ops.aten._padded_dense_to_jagged_forward(
|
|
padded, [offsets], new_kwargs["sum_S"]
|
|
)
|
|
if is_bool and values.is_cuda:
|
|
values = values.to(torch.bool)
|
|
|
|
# shape gymnastics part 2
|
|
if len(padded_ragged_dim1_shape) > 3:
|
|
values = values.unflatten(-1, padded_ragged_dim1_shape[2:])
|
|
elif len(padded_ragged_dim1_shape) < 3:
|
|
values = values.squeeze(-1)
|
|
if ragged_idx > 1:
|
|
values = values.transpose(ragged_idx - 1, 0)
|
|
|
|
min_seqlen = new_kwargs["min_seqlen"]
|
|
max_seqlen = new_kwargs["max_seqlen"]
|
|
metadata_cache = {}
|
|
if min_seqlen is not None:
|
|
metadata_cache["min_seqlen"] = min_seqlen
|
|
if max_seqlen is not None:
|
|
metadata_cache["max_seqlen"] = max_seqlen
|
|
|
|
return NestedTensor(
|
|
values,
|
|
offsets,
|
|
_ragged_idx=ragged_idx,
|
|
_metadata_cache=metadata_cache,
|
|
)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten._nested_view_from_jagged.default,
|
|
"values: t, offsets: t, dummy: jt_all, lengths: t?, ragged_idx: any?, min_seqlen: t?, max_seqlen: t?",
|
|
)
|
|
def _nested_view_from_jagged_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
values, offsets, lengths = (
|
|
new_kwargs["input"],
|
|
new_kwargs["offsets"],
|
|
new_kwargs["lengths"],
|
|
)
|
|
ragged_idx = new_kwargs["ragged_idx"]
|
|
min_seqlen = new_kwargs["min_seqlen"]
|
|
max_seqlen = new_kwargs["max_seqlen"]
|
|
metadata_cache = {}
|
|
if min_seqlen is not None:
|
|
metadata_cache["min_seqlen"] = min_seqlen
|
|
if max_seqlen is not None:
|
|
metadata_cache["max_seqlen"] = max_seqlen
|
|
|
|
return NestedTensor(
|
|
values,
|
|
offsets,
|
|
lengths=lengths,
|
|
_ragged_idx=ragged_idx,
|
|
_metadata_cache=metadata_cache,
|
|
)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten._nested_get_offsets.default, "self: jt_all")
|
|
def _nested_get_offsets(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
return inp._offsets
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten._nested_get_lengths.default, "self: jt_all")
|
|
def _nested_get_lengths(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
return inp._lengths
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten._nested_get_ragged_idx.default, "self: jt_all")
|
|
def _nested_get_ragged_idx(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
return inp._ragged_idx
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten._nested_get_min_seqlen.default, "self: jt_all")
|
|
def _nested_get_min_seqlen(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
return inp._metadata_cache.get("min_seqlen", None)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten._nested_get_max_seqlen.default, "self: jt_all")
|
|
def _nested_get_max_seqlen(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
return inp._metadata_cache.get("max_seqlen", None)
|
|
|
|
|
|
# If a section of the Nested Tensor is fully masked out we still retain the section with a length of 0
|
|
@register_jagged_func(torch.ops.aten.masked_select.default, "self: jt, mask: any")
|
|
def masked_select_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
inp = new_kwargs.pop("input")
|
|
mask = new_kwargs.pop("mask")
|
|
|
|
if inp.ndim > 2:
|
|
raise RuntimeError("masked_select only support 2-D selections currently")
|
|
elif inp.shape != mask.shape:
|
|
raise RuntimeError(
|
|
f"Mask with shape {mask.shape} is not compatible with input's shape {inp.shape}"
|
|
)
|
|
res_values = inp._values.masked_select(mask.values())
|
|
mask_cumsum = F.pad(mask.values().cumsum(dim=0), (1, 0)) # type: ignore[arg-type]
|
|
|
|
args = extract_kwargs(inp)
|
|
args["offsets"] = mask_cumsum[inp._offsets]
|
|
return NestedTensor(
|
|
values=res_values,
|
|
**args,
|
|
)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten._nested_select_backward.default,
|
|
"grad_output: t, self: jt_all, dim: any, index: any",
|
|
)
|
|
def _nested_select_backward_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
grad_output = new_kwargs.pop("grad_output")
|
|
|
|
grad_input = torch.zeros_like(inp, dtype=grad_output.dtype)
|
|
grad_input.select(new_kwargs["dim"], new_kwargs["index"]).copy_(grad_output)
|
|
|
|
return grad_input
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.record_stream.default, "self: jt_all, s: any")
|
|
def record_stream_default(func, *args, **kwargs):
|
|
inp = args[0]
|
|
stream = args[1]
|
|
# ensure all components live until stream computation completes
|
|
func(inp._values, stream)
|
|
func(inp._offsets, stream)
|
|
if inp._lengths is not None:
|
|
func(inp._lengths, stream)
|
|
|
|
|
|
@register_jagged_func(
|
|
[
|
|
torch.ops.aten.new_empty.default,
|
|
torch.ops.aten.new_zeros.default,
|
|
torch.ops.aten.new_ones.default,
|
|
],
|
|
"self: jt_all, size: any, dtype: any?, layout: any?, device: any?, pin_memory: any?",
|
|
)
|
|
def new_empty_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
if len(new_kwargs["size"]) == 0:
|
|
return func(inp._values, **new_kwargs)
|
|
|
|
raise RuntimeError("new_empty() not supported for NJT with shape != ()")
|
|
|
|
|
|
@register_jagged_func(
|
|
[
|
|
torch.ops.aten.elu_backward.default,
|
|
torch.ops.aten.hardshrink_backward.default,
|
|
torch.ops.aten.hardsigmoid_backward.default,
|
|
torch.ops.aten.hardtanh_backward.default,
|
|
torch.ops.aten.softplus_backward.default,
|
|
torch.ops.aten.softshrink_backward.default,
|
|
],
|
|
"self: jt_all, ...",
|
|
)
|
|
def activation_backward(func, *args, **kwargs):
|
|
# first NJT arg is expected to be grad_output
|
|
grad_output = next(arg for arg in args if isinstance(arg, NestedTensor))
|
|
return NestedTensor(
|
|
func(
|
|
*(arg._values if isinstance(arg, NestedTensor) else arg for arg in args),
|
|
**kwargs,
|
|
),
|
|
**extract_kwargs(grad_output),
|
|
)
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.fill.Scalar, "self: jt_all, value: any")
|
|
def fill_Scalar(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
return NestedTensor(func(inp._values, **new_kwargs), **extract_kwargs(inp))
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.fill_.Scalar, "self: jt_all, value: any")
|
|
def fill__Scalar(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
|
|
func(inp._values, **new_kwargs)
|
|
return inp
|
|
|
|
|
|
@register_jagged_func(torch.ops.aten.frexp.Tensor, "self: jt_all")
|
|
def frexp_Tensor(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
inp = new_kwargs.pop("input")
|
|
output_kwargs = extract_kwargs(inp)
|
|
|
|
mantissa, exponent = func(inp._values)
|
|
return NestedTensor(mantissa, **output_kwargs), NestedTensor(
|
|
exponent, **output_kwargs
|
|
)
|
|
|
|
|
|
@register_jagged_func(
|
|
torch.ops.aten.matmul_backward.default,
|
|
"grad: any, self: any, other: any, mask: any",
|
|
)
|
|
def matmul_backward_default(func, *args, **kwargs):
|
|
_, new_kwargs = normalize_function( # type: ignore[misc]
|
|
func, args=args, kwargs=kwargs, normalize_to_only_use_kwargs=True
|
|
)
|
|
|
|
grad = new_kwargs.pop("grad")
|
|
inp = new_kwargs.pop("input")
|
|
other = new_kwargs.pop("other")
|
|
grad_input_mask = new_kwargs.pop("mask")
|
|
|
|
if grad is None:
|
|
return (None, None)
|
|
|
|
grad_self = None
|
|
if grad_input_mask[0]:
|
|
grad_self = torch.matmul(grad, other.transpose(-1, -2))
|
|
|
|
grad_other = None
|
|
if grad_input_mask[1]:
|
|
grad_other = torch.matmul(inp.transpose(-1, -2), grad)
|
|
|
|
return (grad_self, grad_other)
|
|
|
|
|
|
from torch._higher_order_ops.flex_attention import (
|
|
flex_attention as flex_attention_hop,
|
|
flex_attention_backward as flex_attention_backward_hop,
|
|
)
|
|
from torch.fx.graph_module import GraphModule
|
|
|
|
|
|
@flex_attention_hop.py_impl(NestedTensor) # type: ignore[misc]
|
|
def flex_njt(
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
score_mod: Callable,
|
|
block_mask: Tuple,
|
|
scale: float,
|
|
kernel_options: Dict[str, Any],
|
|
score_mod_other_buffers: Tuple = (),
|
|
mask_mod_other_buffers: Tuple = (),
|
|
) -> Tuple[torch.Tensor, torch.Tensor]:
|
|
assert query.dim() == 4 and key.dim() == 4 and value.dim() == 4
|
|
|
|
# TODO: Support this if needed; determine if NJT buffers need be unwrapped as dense.
|
|
if any(
|
|
isinstance(buf, torch.Tensor) and buf.is_nested
|
|
for buf in score_mod_other_buffers + mask_mod_other_buffers
|
|
):
|
|
raise RuntimeError(
|
|
"flex_attention(): Nested tensor score_mod / mask_mod buffers are not "
|
|
"currently supported. Please file an issue if this is important to you."
|
|
)
|
|
|
|
# need to pass dense tensor of shape (B, n_heads, sum(seq_len), D)
|
|
output = flex_attention_hop(
|
|
query.values().unsqueeze(0),
|
|
key.values().unsqueeze(0),
|
|
value.values().unsqueeze(0),
|
|
score_mod=score_mod,
|
|
block_mask=block_mask,
|
|
scale=scale,
|
|
kernel_options=kernel_options,
|
|
score_mod_other_buffers=score_mod_other_buffers,
|
|
mask_mod_other_buffers=mask_mod_other_buffers,
|
|
)
|
|
|
|
# wrap outputs as NJT
|
|
output_njt = torch.nested.nested_tensor_from_jagged(
|
|
output[0].transpose(1, 2).squeeze(0),
|
|
query._offsets, # type: ignore[attr-defined]
|
|
query._lengths, # type: ignore[attr-defined]
|
|
min_seqlen=query._maybe_min_seqlen, # type: ignore[attr-defined]
|
|
max_seqlen=query._maybe_max_seqlen, # type: ignore[attr-defined]
|
|
).transpose(1, 2)
|
|
|
|
logsumexp_njt = torch.nested.nested_tensor_from_jagged(
|
|
output[1].transpose(1, 2).squeeze(0),
|
|
query._offsets, # type: ignore[attr-defined]
|
|
query._lengths, # type: ignore[attr-defined]
|
|
min_seqlen=query._maybe_min_seqlen, # type: ignore[attr-defined]
|
|
max_seqlen=query._maybe_max_seqlen, # type: ignore[attr-defined]
|
|
).transpose(1, 2)
|
|
|
|
return (output_njt, logsumexp_njt)
|
|
|
|
|
|
@flex_attention_backward_hop.py_impl(NestedTensor) # type: ignore[misc]
|
|
def flex_njt_backward(
|
|
query: torch.Tensor,
|
|
key: torch.Tensor,
|
|
value: torch.Tensor,
|
|
out: torch.Tensor,
|
|
logsumexp: torch.Tensor,
|
|
grad_out: torch.Tensor,
|
|
grad_logsumexp: torch.Tensor,
|
|
fw_graph: Union[Callable, GraphModule],
|
|
joint_graph: GraphModule,
|
|
block_mask: Tuple,
|
|
scale: float,
|
|
kernel_options: Dict[str, Any],
|
|
score_mod_other_buffers: Tuple = (),
|
|
mask_mod_other_buffers: Tuple = (),
|
|
) -> Tuple[
|
|
torch.Tensor, torch.Tensor, torch.Tensor, Tuple[Optional[torch.Tensor], ...]
|
|
]:
|
|
output = flex_attention_backward_hop(
|
|
query.values().unsqueeze(0),
|
|
key.values().unsqueeze(0),
|
|
value.values().unsqueeze(0),
|
|
out=out.values().unsqueeze(0),
|
|
logsumexp=logsumexp.values().unsqueeze(0),
|
|
grad_out=grad_out.values().unsqueeze(0),
|
|
grad_logsumexp=grad_logsumexp.values().unsqueeze(0),
|
|
fw_graph=fw_graph,
|
|
joint_graph=joint_graph,
|
|
block_mask=block_mask,
|
|
scale=scale,
|
|
kernel_options=kernel_options,
|
|
score_mod_other_buffers=score_mod_other_buffers,
|
|
mask_mod_other_buffers=mask_mod_other_buffers,
|
|
)
|
|
|
|
# wrap grads as NJTs
|
|
dense_q_grad, dense_k_grad, dense_v_grad, score_mod_other_buffer_grads = output
|
|
njt_q_grad = torch.nested.nested_tensor_from_jagged(
|
|
dense_q_grad.transpose(1, 2).squeeze(0),
|
|
query._offsets, # type: ignore[attr-defined]
|
|
query._lengths, # type: ignore[attr-defined]
|
|
min_seqlen=query._maybe_min_seqlen, # type: ignore[attr-defined]
|
|
max_seqlen=query._maybe_max_seqlen, # type: ignore[attr-defined]
|
|
).transpose(1, 2)
|
|
njt_k_grad = torch.nested.nested_tensor_from_jagged(
|
|
dense_k_grad.transpose(1, 2).squeeze(0),
|
|
key._offsets, # type: ignore[attr-defined]
|
|
key._lengths, # type: ignore[attr-defined]
|
|
min_seqlen=key._maybe_min_seqlen, # type: ignore[attr-defined]
|
|
max_seqlen=key._maybe_max_seqlen, # type: ignore[attr-defined]
|
|
).transpose(1, 2)
|
|
njt_v_grad = torch.nested.nested_tensor_from_jagged(
|
|
dense_v_grad.transpose(1, 2).squeeze(0),
|
|
value._offsets, # type: ignore[attr-defined]
|
|
value._lengths, # type: ignore[attr-defined]
|
|
min_seqlen=value._maybe_min_seqlen, # type: ignore[attr-defined]
|
|
max_seqlen=value._maybe_max_seqlen, # type: ignore[attr-defined]
|
|
).transpose(1, 2)
|
|
|
|
return (njt_q_grad, njt_k_grad, njt_v_grad, score_mod_other_buffer_grads)
|
|
|
|
|
|
# Make the dummy available on the C++ side.
|
|
@register_jagged_func(torch.ops.aten._nested_get_jagged_dummy.default, "self: any")
|
|
def _nested_get_jagged_dummy(func, *args, **kwargs):
|
|
from torch.nested._internal.nested_tensor import _nt_view_dummy
|
|
|
|
return _nt_view_dummy()
|
|
|
|
|
|
with torch.library._scoped_library("aten", "IMPL") as aten:
|
|
aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "CPU")
|
|
aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "CUDA")
|
|
aten.impl("_nested_get_jagged_dummy", _nested_get_jagged_dummy, "Meta")
|