team-10/env/Lib/site-packages/torchvision/datasets/inaturalist.py
2025-08-02 07:34:44 +02:00

244 lines
10 KiB
Python

import os
import os.path
from pathlib import Path
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
from PIL import Image
from .utils import download_and_extract_archive, verify_str_arg
from .vision import VisionDataset
CATEGORIES_2021 = ["kingdom", "phylum", "class", "order", "family", "genus"]
DATASET_URLS = {
"2017": "https://ml-inat-competition-datasets.s3.amazonaws.com/2017/train_val_images.tar.gz",
"2018": "https://ml-inat-competition-datasets.s3.amazonaws.com/2018/train_val2018.tar.gz",
"2019": "https://ml-inat-competition-datasets.s3.amazonaws.com/2019/train_val2019.tar.gz",
"2021_train": "https://ml-inat-competition-datasets.s3.amazonaws.com/2021/train.tar.gz",
"2021_train_mini": "https://ml-inat-competition-datasets.s3.amazonaws.com/2021/train_mini.tar.gz",
"2021_valid": "https://ml-inat-competition-datasets.s3.amazonaws.com/2021/val.tar.gz",
}
DATASET_MD5 = {
"2017": "7c784ea5e424efaec655bd392f87301f",
"2018": "b1c6952ce38f31868cc50ea72d066cc3",
"2019": "c60a6e2962c9b8ccbd458d12c8582644",
"2021_train": "e0526d53c7f7b2e3167b2b43bb2690ed",
"2021_train_mini": "db6ed8330e634445efc8fec83ae81442",
"2021_valid": "f6f6e0e242e3d4c9569ba56400938afc",
}
class INaturalist(VisionDataset):
"""`iNaturalist <https://github.com/visipedia/inat_comp>`_ Dataset.
Args:
root (str or ``pathlib.Path``): Root directory of dataset where the image files are stored.
This class does not require/use annotation files.
version (string, optional): Which version of the dataset to download/use. One of
'2017', '2018', '2019', '2021_train', '2021_train_mini', '2021_valid'.
Default: `2021_train`.
target_type (string or list, optional): Type of target to use, for 2021 versions, one of:
- ``full``: the full category (species)
- ``kingdom``: e.g. "Animalia"
- ``phylum``: e.g. "Arthropoda"
- ``class``: e.g. "Insecta"
- ``order``: e.g. "Coleoptera"
- ``family``: e.g. "Cleridae"
- ``genus``: e.g. "Trichodes"
for 2017-2019 versions, one of:
- ``full``: the full (numeric) category
- ``super``: the super category, e.g. "Amphibians"
Can also be a list to output a tuple with all specified target types.
Defaults to ``full``.
transform (callable, optional): A function/transform that takes in a PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
download (bool, optional): If true, downloads the dataset from the internet and
puts it in root directory. If dataset is already downloaded, it is not
downloaded again.
loader (callable, optional): A function to load an image given its path.
By default, it uses PIL as its image loader, but users could also pass in
``torchvision.io.decode_image`` for decoding image data into tensors directly.
"""
def __init__(
self,
root: Union[str, Path],
version: str = "2021_train",
target_type: Union[List[str], str] = "full",
transform: Optional[Callable] = None,
target_transform: Optional[Callable] = None,
download: bool = False,
loader: Optional[Callable[[Union[str, Path]], Any]] = None,
) -> None:
self.version = verify_str_arg(version, "version", DATASET_URLS.keys())
super().__init__(os.path.join(root, version), transform=transform, target_transform=target_transform)
os.makedirs(root, exist_ok=True)
if download:
self.download()
if not self._check_exists():
raise RuntimeError("Dataset not found or corrupted. You can use download=True to download it")
self.all_categories: List[str] = []
# map: category type -> name of category -> index
self.categories_index: Dict[str, Dict[str, int]] = {}
# list indexed by category id, containing mapping from category type -> index
self.categories_map: List[Dict[str, int]] = []
if not isinstance(target_type, list):
target_type = [target_type]
if self.version[:4] == "2021":
self.target_type = [verify_str_arg(t, "target_type", ("full", *CATEGORIES_2021)) for t in target_type]
self._init_2021()
else:
self.target_type = [verify_str_arg(t, "target_type", ("full", "super")) for t in target_type]
self._init_pre2021()
# index of all files: (full category id, filename)
self.index: List[Tuple[int, str]] = []
for dir_index, dir_name in enumerate(self.all_categories):
files = os.listdir(os.path.join(self.root, dir_name))
for fname in files:
self.index.append((dir_index, fname))
self.loader = loader or Image.open
def _init_2021(self) -> None:
"""Initialize based on 2021 layout"""
self.all_categories = sorted(os.listdir(self.root))
# map: category type -> name of category -> index
self.categories_index = {k: {} for k in CATEGORIES_2021}
for dir_index, dir_name in enumerate(self.all_categories):
pieces = dir_name.split("_")
if len(pieces) != 8:
raise RuntimeError(f"Unexpected category name {dir_name}, wrong number of pieces")
if pieces[0] != f"{dir_index:05d}":
raise RuntimeError(f"Unexpected category id {pieces[0]}, expecting {dir_index:05d}")
cat_map = {}
for cat, name in zip(CATEGORIES_2021, pieces[1:7]):
if name in self.categories_index[cat]:
cat_id = self.categories_index[cat][name]
else:
cat_id = len(self.categories_index[cat])
self.categories_index[cat][name] = cat_id
cat_map[cat] = cat_id
self.categories_map.append(cat_map)
def _init_pre2021(self) -> None:
"""Initialize based on 2017-2019 layout"""
# map: category type -> name of category -> index
self.categories_index = {"super": {}}
cat_index = 0
super_categories = sorted(os.listdir(self.root))
for sindex, scat in enumerate(super_categories):
self.categories_index["super"][scat] = sindex
subcategories = sorted(os.listdir(os.path.join(self.root, scat)))
for subcat in subcategories:
if self.version == "2017":
# this version does not use ids as directory names
subcat_i = cat_index
cat_index += 1
else:
try:
subcat_i = int(subcat)
except ValueError:
raise RuntimeError(f"Unexpected non-numeric dir name: {subcat}")
if subcat_i >= len(self.categories_map):
old_len = len(self.categories_map)
self.categories_map.extend([{}] * (subcat_i - old_len + 1))
self.all_categories.extend([""] * (subcat_i - old_len + 1))
if self.categories_map[subcat_i]:
raise RuntimeError(f"Duplicate category {subcat}")
self.categories_map[subcat_i] = {"super": sindex}
self.all_categories[subcat_i] = os.path.join(scat, subcat)
# validate the dictionary
for cindex, c in enumerate(self.categories_map):
if not c:
raise RuntimeError(f"Missing category {cindex}")
def __getitem__(self, index: int) -> Tuple[Any, Any]:
"""
Args:
index (int): Index
Returns:
tuple: (image, target) where the type of target specified by target_type.
"""
cat_id, fname = self.index[index]
img = self.loader(os.path.join(self.root, self.all_categories[cat_id], fname))
target: Any = []
for t in self.target_type:
if t == "full":
target.append(cat_id)
else:
target.append(self.categories_map[cat_id][t])
target = tuple(target) if len(target) > 1 else target[0]
if self.transform is not None:
img = self.transform(img)
if self.target_transform is not None:
target = self.target_transform(target)
return img, target
def __len__(self) -> int:
return len(self.index)
def category_name(self, category_type: str, category_id: int) -> str:
"""
Args:
category_type(str): one of "full", "kingdom", "phylum", "class", "order", "family", "genus" or "super"
category_id(int): an index (class id) from this category
Returns:
the name of the category
"""
if category_type == "full":
return self.all_categories[category_id]
else:
if category_type not in self.categories_index:
raise ValueError(f"Invalid category type '{category_type}'")
else:
for name, id in self.categories_index[category_type].items():
if id == category_id:
return name
raise ValueError(f"Invalid category id {category_id} for {category_type}")
def _check_exists(self) -> bool:
return os.path.exists(self.root) and len(os.listdir(self.root)) > 0
def download(self) -> None:
if self._check_exists():
return
base_root = os.path.dirname(self.root)
download_and_extract_archive(
DATASET_URLS[self.version], base_root, filename=f"{self.version}.tgz", md5=DATASET_MD5[self.version]
)
orig_dir_name = os.path.join(base_root, os.path.basename(DATASET_URLS[self.version]).rstrip(".tar.gz"))
if not os.path.exists(orig_dir_name):
raise RuntimeError(f"Unable to find downloaded files at {orig_dir_name}")
os.rename(orig_dir_name, self.root)