team-10/env/Lib/site-packages/transformers/models/aimv2/modeling_aimv2.py
2025-08-02 07:34:44 +02:00

819 lines
33 KiB
Python

# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# This file was automatically generated from src/transformers/models/aimv2/modular_aimv2.py.
# Do NOT edit this file manually as any edits will be overwritten by the generation of
# the file from the modular. If any change should be done, please apply the change to the
# modular_aimv2.py file directly. One of our CI enforces this.
# 🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨🚨
# coding=utf-8
# Copyright 2025 Apple Inc. and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import math
from dataclasses import dataclass
from typing import Any, Callable, Optional
import torch
import torch.nn.functional as F
from torch import nn
from ...activations import ACT2FN
from ...integrations import use_kernel_forward_from_hub
from ...masking_utils import create_causal_mask
from ...modeling_layers import GradientCheckpointingLayer
from ...modeling_outputs import BaseModelOutput, BaseModelOutputWithPooling
from ...modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
from ...utils import ModelOutput, auto_docstring, can_return_tuple
from .configuration_aimv2 import Aimv2Config, Aimv2TextConfig, Aimv2VisionConfig
@dataclass
@auto_docstring
class Aimv2Output(ModelOutput):
r"""
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `return_loss` is `True`):
Contrastive loss for image-text similarity.
logits_per_image (`torch.FloatTensor` of shape `(image_batch_size, text_batch_size)`):
The scaled dot product scores between `image_embeds` and `text_embeds`. This represents the image-text
similarity scores.
logits_per_text (`torch.FloatTensor` of shape `(text_batch_size, image_batch_size)`):
The scaled dot product scores between `text_embeds` and `image_embeds`. This represents the text-image
similarity scores.
text_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The text embeddings obtained by applying the projection layer to the pooled output of [`Aimv2TextModel`].
image_embeds (`torch.FloatTensor` of shape `(batch_size, output_dim`):
The image embeddings obtained by applying the projection layer to the pooled output of [`Aimv2VisionModel`].
text_model_output (`BaseModelOutputWithPooling`):
The output of the [`Aimv2TextModel`].
vision_model_output (`BaseModelOutputWithPooling`):
The output of the [`Aimv2VisionModel`].
"""
loss: Optional[torch.FloatTensor] = None
logits_per_image: Optional[torch.FloatTensor] = None
logits_per_text: Optional[torch.FloatTensor] = None
text_embeds: Optional[torch.FloatTensor] = None
image_embeds: Optional[torch.FloatTensor] = None
text_model_output: BaseModelOutputWithPooling = None
vision_model_output: BaseModelOutputWithPooling = None
def to_tuple(self) -> tuple[Any]:
return tuple(
self[k] if k not in ["text_model_output", "vision_model_output"] else getattr(self, k).to_tuple()
for k in self.keys()
)
@use_kernel_forward_from_hub("RMSNorm")
class Aimv2RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Aimv2RMSNorm is equivalent to T5LayerNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
def extra_repr(self):
return f"{tuple(self.weight.shape)}, eps={self.variance_epsilon}"
class Aimv2MLP(nn.Module):
def __init__(self, config):
super().__init__()
self.config = config
self.hidden_size = config.hidden_size
self.intermediate_size = config.intermediate_size
self.gate_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.up_proj = nn.Linear(self.hidden_size, self.intermediate_size, bias=config.mlp_bias)
self.down_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.mlp_bias)
self.act_fn = ACT2FN[config.hidden_act]
def forward(self, x):
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
class Aimv2VisionEmbeddings(nn.Module):
def __init__(self, config: Aimv2VisionConfig):
super().__init__()
self.config = config
self.patch_size = config.patch_size
self.patch_embed = nn.Conv2d(
config.num_channels, config.hidden_size, kernel_size=config.patch_size, stride=config.patch_size
)
self.rms_norm = Aimv2RMSNorm(config.hidden_size, config.rms_norm_eps)
num_patches = (config.image_size // config.patch_size) ** 2
if not self.config.is_native:
self.position_embedding = nn.Embedding(num_patches, config.hidden_size)
self.register_buffer("position_ids", torch.arange(num_patches).expand((1, -1)), persistent=False)
@staticmethod
def build_2d_sincos_position_embedding(
height, width, embed_dim=256, temperature=10000.0, device="cpu", dtype=torch.float32
) -> torch.Tensor:
grid_w = torch.arange(int(width), dtype=dtype, device=device)
grid_h = torch.arange(int(height), dtype=dtype, device=device)
grid_h, grid_w = torch.meshgrid(grid_w, grid_h, indexing="xy")
pos_dim = embed_dim // 4
omega = torch.arange(pos_dim, dtype=dtype, device=device) / pos_dim
omega = 1.0 / (temperature**omega)
out_h = grid_h.flatten()[..., None] @ omega[None, :]
out_w = grid_w.flatten()[..., None] @ omega[None, :]
return torch.concat([out_h.sin(), out_h.cos(), out_w.sin(), out_w.cos()], dim=1)[None, :, :]
def forward(self, pixel_values: torch.Tensor) -> torch.Tensor:
_, _, height, width = pixel_values.size()
hidden_states = self.patch_embed(pixel_values).flatten(2).transpose(1, 2)
hidden_states = self.rms_norm(hidden_states)
if self.config.is_native:
pos_embed = self.build_2d_sincos_position_embedding(
height // self.patch_size,
width // self.patch_size,
embed_dim=self.config.hidden_size,
device=hidden_states.device,
dtype=hidden_states.dtype,
)
else:
pos_embed = self.position_embedding(self.position_ids)
hidden_states = hidden_states + pos_embed
return hidden_states
class Aimv2TextEmbeddings(nn.Module):
def __init__(self, config: Aimv2TextConfig):
super().__init__()
embed_dim = config.hidden_size
self.token_embedding = nn.Embedding(config.vocab_size, embed_dim)
self.position_embedding = nn.Embedding(config.max_position_embeddings, embed_dim)
# position_ids (1, len position emb) is contiguous in memory and exported when serialized
self.register_buffer(
"position_ids", torch.arange(config.max_position_embeddings).expand((1, -1)), persistent=False
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
position_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.FloatTensor] = None,
) -> torch.Tensor:
seq_length = input_ids.shape[-1] if input_ids is not None else inputs_embeds.shape[-2]
max_position_embedding = self.position_embedding.weight.shape[0]
if seq_length > max_position_embedding:
raise ValueError(
f"Sequence length must be less than max_position_embeddings (got `sequence length`: "
f"{seq_length} and max_position_embeddings: {max_position_embedding}"
)
if position_ids is None:
position_ids = self.position_ids[:, :seq_length]
if inputs_embeds is None:
inputs_embeds = self.token_embedding(input_ids)
position_embeddings = self.position_embedding(position_ids)
embeddings = inputs_embeds + position_embeddings
return embeddings
def eager_attention_forward(
module: nn.Module,
query: torch.Tensor,
key: torch.Tensor,
value: torch.Tensor,
attention_mask: Optional[torch.Tensor],
scaling: float,
dropout: float = 0.0,
**kwargs,
):
attn_weights = torch.matmul(query, key.transpose(-1, -2)) * scaling
if attention_mask is not None:
attn_weights = attn_weights + attention_mask
attn_weights = nn.functional.softmax(attn_weights, dim=-1, dtype=torch.float32).to(query.dtype)
attn_weights = nn.functional.dropout(attn_weights, p=dropout, training=module.training)
attn_output = torch.matmul(attn_weights, value)
attn_output = attn_output.transpose(1, 2).contiguous()
return attn_output, attn_weights
class Aimv2Attention(nn.Module):
"""Multi-headed attention from 'Attention Is All You Need' paper"""
def __init__(self, config):
super().__init__()
self.config = config
self.embed_dim = config.hidden_size
self.num_heads = config.num_attention_heads
self.head_dim = self.embed_dim // self.num_heads
if self.head_dim * self.num_heads != self.embed_dim:
raise ValueError(
f"embed_dim must be divisible by num_heads (got `embed_dim`: {self.embed_dim} and `num_heads`:"
f" {self.num_heads})."
)
self.scale = self.head_dim**-0.5
self.dropout = config.attention_dropout
self.is_causal = False
self.k_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_bias)
self.v_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_bias)
self.q_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_bias)
self.out_proj = nn.Linear(self.embed_dim, self.embed_dim, bias=config.qkv_bias)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> tuple[torch.Tensor, Optional[torch.Tensor]]:
"""Input shape: Batch x Time x Channel"""
batch_size, seq_length, embed_dim = hidden_states.shape
queries = self.q_proj(hidden_states)
keys = self.k_proj(hidden_states)
values = self.v_proj(hidden_states)
queries = queries.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
keys = keys.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
values = values.view(batch_size, seq_length, self.num_heads, self.head_dim).transpose(1, 2)
attention_interface: Callable = eager_attention_forward
if self.config._attn_implementation != "eager":
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
attn_output, attn_weights = attention_interface(
self,
queries,
keys,
values,
attention_mask,
is_causal=self.is_causal,
scaling=self.scale,
dropout=0.0 if not self.training else self.dropout,
)
attn_output = attn_output.reshape(batch_size, seq_length, embed_dim).contiguous()
attn_output = self.out_proj(attn_output)
return attn_output, attn_weights
class Aimv2EncoderLayer(GradientCheckpointingLayer):
def __init__(self, config: Aimv2VisionConfig):
super().__init__()
self.attention = Aimv2Attention(config)
self.ffn = Aimv2MLP(config)
self.rms_norm1 = Aimv2RMSNorm(config.hidden_size, config.rms_norm_eps)
self.rms_norm2 = Aimv2RMSNorm(config.hidden_size, config.rms_norm_eps)
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = False,
) -> tuple[torch.Tensor, torch.Tensor]:
norm_hidden_states = self.rms_norm1(hidden_states)
attn_output, attn_weights = self.attention(hidden_states=norm_hidden_states, attention_mask=attention_mask)
hidden_states = hidden_states + attn_output
norm_hidden_states = self.rms_norm2(hidden_states)
mlp_output = self.ffn(norm_hidden_states)
hidden_states = hidden_states + mlp_output
return (hidden_states, attn_weights) if output_attentions else (hidden_states, None)
class Aimv2Encoder(nn.Module):
"""
Transformer encoder consisting of `config.num_hidden_layers` self attention layers. Each layer is a
[`Aimv2EncoderLayer`].
Args:
config: Aimv2Config
"""
def __init__(self, config: Aimv2Config):
super().__init__()
self.config = config
self.layers = nn.ModuleList([Aimv2EncoderLayer(config) for _ in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
# Ignore copy
@can_return_tuple
def forward(
self,
inputs_embeds,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> BaseModelOutput:
r"""
Args:
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation.
This is useful if you want more control over how to convert `input_ids` indices into associated vectors
than the model's internal embedding lookup matrix.
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
Mask to avoid performing attention on padding token indices. Mask values selected in `[0, 1]`:
- 1 for tokens that are **not masked**,
- 0 for tokens that are **masked**.
[What are attention masks?](../glossary#attention-mask)
output_attentions (`bool`, *optional*):
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
returned tensors for more detail.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors
for more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
encoder_states = () if output_hidden_states else None
all_attentions = () if output_attentions else None
hidden_states = inputs_embeds
for encoder_layer in self.layers:
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
layer_outputs = encoder_layer(
hidden_states,
attention_mask,
output_attentions=output_attentions,
)
hidden_states = layer_outputs[0]
if output_attentions:
all_attentions = all_attentions + (layer_outputs[1],)
if output_hidden_states:
encoder_states = encoder_states + (hidden_states,)
return BaseModelOutput(
last_hidden_state=hidden_states,
hidden_states=encoder_states,
attentions=all_attentions,
)
class Aimv2AttentionPoolingHead(nn.Module):
def __init__(self, config: Aimv2VisionConfig):
super().__init__()
self.hidden_size = config.hidden_size
self.num_heads = config.num_attention_heads
self.k_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.qkv_bias)
self.v_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=config.qkv_bias)
self.cls_token = nn.Parameter(torch.zeros(1, 1, self.hidden_size))
self.output_proj = nn.Linear(self.hidden_size, self.hidden_size, bias=True)
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
batch_size, seq_len, hidden_dim = hidden_states.shape
cls_token = self.cls_token.expand(batch_size, -1, -1)
key = self.k_proj(hidden_states).reshape(batch_size, seq_len, self.num_heads, hidden_dim // self.num_heads)
value = self.v_proj(hidden_states).reshape(batch_size, seq_len, self.num_heads, hidden_dim // self.num_heads)
query = cls_token.reshape(batch_size, 1, self.num_heads, hidden_dim // self.num_heads)
key = key.permute(0, 2, 1, 3)
value = value.permute(0, 2, 1, 3)
query = query.permute(0, 2, 1, 3)
attn_output = F.scaled_dot_product_attention(query, key, value)
attn_output = attn_output.transpose(1, 2).reshape(batch_size, 1, hidden_dim)
attn_output = attn_output.mean(dim=1)
output = self.output_proj(attn_output)
return output
@auto_docstring
class Aimv2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models. The model is only intended for inference and doesn't support finetuning.
"""
config: Aimv2Config
base_model_prefix = "aimv2"
supports_gradient_checkpointing = True
_no_split_modules = [
"Aimv2EncoderLayer",
"Aimv2AttentionPoolingHead",
"Aimv2VisionEmbeddings",
"Aimv2TextEmbeddings",
]
_supports_sdpa = True
_supports_flash_attn = True
_supports_flex_attn = True
def _init_weights(self, module):
super()._init_weights(module)
if hasattr(module, "logit_scale"):
if isinstance(module.logit_scale, nn.Parameter):
module.logit_scale.data.fill_(math.log(1 / 0.07))
elif isinstance(module, Aimv2AttentionPoolingHead):
module.cls_token.data.normal_(mean=0.0, std=self.config.initializer_range)
@auto_docstring(
custom_intro="""
The Vision model from AIMv2 without any head or projection on top.
"""
)
class Aimv2VisionModel(Aimv2PreTrainedModel):
config: Aimv2VisionConfig
main_input_name = "pixel_values"
def __init__(self, config: Aimv2VisionConfig):
super().__init__(config)
self.config = config
self.embeddings = Aimv2VisionEmbeddings(config)
self.encoder = Aimv2Encoder(config)
# The only change from SiglipVisionTransformer is, layernorm -> rms_norm.
self.rms_norm = Aimv2RMSNorm(config.hidden_size, config.rms_norm_eps)
self.use_head = config.use_head
if self.use_head:
self.head = Aimv2AttentionPoolingHead(config)
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.embeddings.patch_embed
@can_return_tuple
@auto_docstring
def forward(
self,
pixel_values,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> BaseModelOutputWithPooling:
r"""
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Siglip2VisionModel
>>> model = Aimv2VisionModel.from_pretrained("apple/aimv2-large-patch14-native")
>>> processor = AutoProcessor.from_pretrained("apple/aimv2-large-patch14-native")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_state = outputs.last_hidden_state
>>> pooled_output = outputs.pooler_output # pooled features
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
hidden_states = self.embeddings(pixel_values)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.rms_norm(last_hidden_state)
pooler_output = self.head(last_hidden_state) if self.use_head else None
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooler_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
@auto_docstring(
custom_intro="""
The text model from AIMv2 without any head or projection on top.
"""
)
class Aimv2TextModel(Aimv2PreTrainedModel):
main_input_name = "input_ids"
def __init__(self, config: Aimv2TextConfig):
super().__init__(config)
self.config = config
self.embeddings = Aimv2TextEmbeddings(config)
self.encoder = Aimv2Encoder(config)
self.rms_norm = Aimv2RMSNorm(config.hidden_size, config.rms_norm_eps)
self.eos_token_id = config.eos_token_id
self.post_init()
def get_input_embeddings(self) -> nn.Module:
return self.embeddings.token_embedding
def set_input_embeddings(self, value):
self.embeddings.token_embedding = value
@can_return_tuple
@auto_docstring
def forward(
self,
input_ids,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> BaseModelOutputWithPooling:
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
hidden_states = self.embeddings(input_ids)
batch_size, seq_len, _ = hidden_states.shape
cache_position = torch.arange(seq_len, dtype=torch.long, device=hidden_states.device)
position_ids = cache_position.unsqueeze(0).expand(batch_size, -1)
if attention_mask is not None:
attention_mask = create_causal_mask(
config=self.config,
input_embeds=hidden_states,
position_ids=position_ids,
attention_mask=attention_mask,
cache_position=cache_position,
past_key_values=None,
)
encoder_outputs = self.encoder(
inputs_embeds=hidden_states,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
last_hidden_state = encoder_outputs[0]
last_hidden_state = self.rms_norm(last_hidden_state)
# Get pooled output
pooled_output = last_hidden_state[
torch.arange(last_hidden_state.shape[0], device=last_hidden_state.device),
(input_ids.to(dtype=torch.int, device=last_hidden_state.device) == self.eos_token_id).int().argmax(dim=-1),
]
return BaseModelOutputWithPooling(
last_hidden_state=last_hidden_state,
pooler_output=pooled_output,
hidden_states=encoder_outputs.hidden_states,
attentions=encoder_outputs.attentions,
)
def _get_vector_norm(tensor: torch.Tensor) -> torch.Tensor:
"""
This method is equivalent to tensor.norm(p=2, dim=-1, keepdim=True) and used to make
model `executorch` exportable. See issue https://github.com/pytorch/executorch/issues/3566
"""
square_tensor = torch.pow(tensor, 2)
sum_tensor = torch.sum(square_tensor, dim=-1, keepdim=True)
normed_tensor = torch.pow(sum_tensor, 0.5)
return normed_tensor
@auto_docstring
class Aimv2Model(Aimv2PreTrainedModel):
config: Aimv2Config
_no_split_modules = ["Aimv2TextEmbeddings", "Aimv2EncoderLayer", "Aimv2VisionEmbeddings"]
def __init__(self, config: Aimv2Config):
super().__init__(config)
self.projection_dim = config.projection_dim
self.vision_embed_dim = config.vision_config.hidden_size
self.text_embed_dim = config.text_config.hidden_size
self.vision_model = Aimv2VisionModel._from_config(config.vision_config)
self.text_model = Aimv2TextModel._from_config(config.text_config)
self.visual_projection = nn.Linear(self.vision_embed_dim, self.projection_dim, bias=False)
self.text_projection = nn.Linear(self.text_embed_dim, self.projection_dim, bias=False)
self.logit_scale = nn.Parameter(torch.tensor(self.config.logit_scale_init_value))
self.max_log_logit_scale = math.log(config.max_logit_scale)
self.post_init()
@auto_docstring
def get_text_features(
self,
input_ids: Optional[torch.Tensor] = None,
attention_mask: Optional[torch.Tensor] = None,
position_ids: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> torch.FloatTensor:
r"""
Returns:
text_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The text embeddings obtained by
applying the projection layer to the pooled output of [`Aimv2TextModel`].
Examples:
```python
>>> from transformers import AutoTokenizer, Aimv2Model
>>> model = Aimv2Model.from_pretrained("openai/aimv2-vit-base-patch32")
>>> tokenizer = AutoTokenizer.from_pretrained("openai/aimv2-vit-base-patch32")
>>> inputs = tokenizer(["a photo of a cat", "a photo of a dog"], padding=True, return_tensors="pt")
>>> text_features = model.get_text_features(**inputs)
```"""
# Use AIMV2 model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
text_outputs: BaseModelOutputWithPooling = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
pooled_output = text_outputs.pooler_output
text_features = self.text_projection(pooled_output)
return text_features
@auto_docstring
def get_image_features(
self,
pixel_values: Optional[torch.FloatTensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
interpolate_pos_encoding: bool = False,
) -> torch.FloatTensor:
r"""
Returns:
image_features (`torch.FloatTensor` of shape `(batch_size, output_dim`): The image embeddings obtained by
applying the projection layer to the pooled output of [`Aimv2VisionModel`].
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Aimv2Model
>>> model = Aimv2Model.from_pretrained("openai/aimv2-vit-base-patch32")
>>> processor = AutoProcessor.from_pretrained("openai/aimv2-vit-base-patch32")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(images=image, return_tensors="pt")
>>> image_features = model.get_image_features(**inputs)
```"""
# Use AIMV2 model's config for some fields (if specified) instead of those of vision & text components.
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
vision_outputs: BaseModelOutputWithPooling = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
interpolate_pos_encoding=interpolate_pos_encoding,
)
pooled_output = vision_outputs.pooler_output
image_features = self.visual_projection(pooled_output)
return image_features
@auto_docstring
@can_return_tuple
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
pixel_values: Optional[torch.FloatTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
output_attentions: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
) -> Aimv2Output:
r"""
Examples:
```python
>>> from PIL import Image
>>> import requests
>>> from transformers import AutoProcessor, Aimv2Model
>>> model = Aimv2Model.from_pretrained("apple/aimv2-large-patch14-224-lit")
>>> processor = AutoProcessor.from_pretrained("apple/aimv2-large-patch14-224-lit")
>>> url = "http://images.cocodataset.org/val2017/000000039769.jpg"
>>> image = Image.open(requests.get(url, stream=True).raw)
>>> inputs = processor(
... text=["a photo of a cat", "a photo of a dog"], images=image, return_tensors="pt", padding=True
... )
>>> outputs = model(**inputs)
>>> logits_per_image = outputs.logits_per_image # this is the image-text similarity score
>>> probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the label probabilities
```"""
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
vision_outputs: BaseModelOutputWithPooling = self.vision_model(
pixel_values=pixel_values,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
text_outputs: BaseModelOutputWithPooling = self.text_model(
input_ids=input_ids,
attention_mask=attention_mask,
output_attentions=output_attentions,
output_hidden_states=output_hidden_states,
)
image_embeds = vision_outputs.pooler_output
image_embeds = self.visual_projection(image_embeds)
text_embeds = text_outputs.pooler_output
text_embeds = self.text_projection(text_embeds)
# normalized features
image_embeds = image_embeds / _get_vector_norm(image_embeds)
text_embeds = text_embeds / _get_vector_norm(text_embeds)
logit_scale = self.logit_scale.clamp(0.0, self.max_log_logit_scale).exp().to(text_embeds.device)
logits_per_text = (logit_scale * text_embeds) @ image_embeds.t()
logits_per_image = logits_per_text.t()
return Aimv2Output(
logits_per_image=logits_per_image,
logits_per_text=logits_per_text,
text_embeds=text_embeds,
image_embeds=image_embeds,
text_model_output=text_outputs,
vision_model_output=vision_outputs,
)
__all__ = ["Aimv2VisionModel", "Aimv2Model", "Aimv2PreTrainedModel", "Aimv2TextModel"]